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ABSTRACT

The study of baryon resonances offers a deeper understanding of the strong interaction, since the

dynamics and relevant degrees of freedom hidden within them are reflected by the properties of

these states. The baryon resonances have been fairly accurately predicted in the low-energy region

by constituent quark models and lattice quantum chromodynamics. However, most of the predicted

higher-lying excited resonances (center-of-mass energies above 1.7 GeV/c2) and experimental find-

ings do not match up. The model calculations predict more baryon resonances than have been

experimentally observed. Quark model calculations have suggested that some of the unobserved

resonances couple strongly to γp reactions.

The higher-lying excited states are also generally predicted to have strong couplings to final

states involving a heavier meson, e. g. one of the vector mesons, ρ, ω, φ. The excited states of the

nucleon are usually found as broadly overlapping resonances, which may decay into a multitude

of final states involving mesons and baryons. Polarization observables make it possible to isolate

single resonance contributions from other interference terms. This works presents measurements of

the helicity asymmetry, E, for the reaction γp→ pω in the energy range 1.1 GeV < Eγ < 2.3 GeV,

differential cross sections, dσ
d cos θωc.m.

, and spin density matrix elements, ρ0
MM ′ , also for the reaction

γp→ pω in the energy range 1.5 GeV < Eγ < 5.4 GeV.

Photoproduction of nucleon resonances in their decay to strange particles also offers attractive

possibilities because the strange quark generates another degree of freedom and gives additional

information not available from the nucleon-nucleon scattering. Thus, we have also extracted the

helicity asymmetry, E, for the reaction γp→ K0Σ+ in the energy range 1.1 GeV < Eγ < 2.1 GeV,

differential cross sections, dσ
d cos θKc.m.

, and recoil hyperon polarization, P , also for the reaction γp→

K0Σ+ in the energy range 1.15 GeV < Eγ < 3.0 GeV.

The data were collected at Jefferson Lab, using the CLAS detector, as part of the g9a and g12

experiments. Both experiments, as part of the N∗ spectroscopy program at Jefferson Laboratory,

accumulated photoproduction data using circularly-polarized photons incident on a longitudinally-

polarized butanol target in the g9a experiment and un-polarized liquid hydrogen target for the g12

experiment.

xxv



A partial-wave analysis to the E data for the reaction γp → pω within the Bonn-Gatchina

framework found dominant contributions from the 3/2+ near threshold, which is identified with

the sub-treshold N(1720)3/2+ resonance. Some additional resonances, including 2 new resonances

and the t-channel π and pomeron exchange are needed to describe the data.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Quantum Chromodynamics

1.1.1 Standard Model of Particle Physics

Since the era of the Greek philosophers, humans have been fascinated with understanding the

fundamental building blocks of the universe. This curiosity, as well as 2000 years of continuous

efforts, have fructified an existing model, namely the standard model of particle physics that ex-

plains how the universe works in term of its fundamental building blocks and their interactions.

According to this model, the universe contains two families of matter particles, quarks and leptons,

and one family of gauge bosons that carries the interactions among particles.

Figure 1.1: The standard model of particle physics, consists of quarks, leptons and gauge bosons,
along with the Higgs boson, that is responsible for generating masses. Image source: Wikipedia.

Quarks that consist of six different flavors as shown in Figure 1.1, interact strongly, mediated by

gluons. The theory that describes the strong interactions of quarks and gluons is called Quantum

Chromodynamics (QCD). Unfortunately, QCD can not be solved analytically in the low energy
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regime. Furthermore, a free and isolated quark never exists in nature. Quarks (and gluons) al-

ways form a composite object called a hadron. This ”confinement” feature and the analytically

un-solvable nature of QCD, has remained the biggest obstacle to understanding the strong inter-

action since the discovery of QCD in the early 1970s. Therefore, physicists developed approximate

phenomenological models or QCD inspired models, such as the Constituent Quark Model (CQM),

and used the models to predict the spectrum of hadrons.

The principle goal behind this work is to understand how quark and gluon dynamics gives rise

to the spectrum of hadrons. There are two classes of hadrons, classified based on their spin: mesons

and baryons. Baryons have half integer spin and obey Fermi-Dirac statistics, while mesons have

integer spin and obey Bose-Einstein statistics. Normal baryons, such as nucleons (protons and

neutrons), consist of three valence quarks. Nowadays, the study of hadron structure and spectrum

are the main tools, utilized by physicists to get insight into the nature of strong interactions. Baryon

spectroscopy is the prime motivation of this analysis.

Baryon Spectroscopy is the study of excited nucleons. One way to excite nucleons is by using

a high-energy photon beam. When a high-energy photon strikes the nucleon, an excited nucleon

is formed in a very short time before decaying to a ground state nucleons while producing other

particles. These types of events, namely photoproduction reaction, are the focus of this work. In

this thesis, we present the differential cross section and the polarization observables from vector

meson photoproduction and hyperon photoproduction channels. Those channels are very important

for some reasons and will be discussed in section 1.4 and 1.5.

1.1.2 Nature of Quantum Chromodynamics

As manifest in its name, the strong interaction is the strongest force among other fundamental

interactions, namely gravitational, weak, and electromagnetic interaction.

The electromagnetic interaction as described by a theory called Quantum Electrodynamics

(QED) is the most understood interaction. QED dictates the behavior of most atomic and molecular

phenomena that we see on the daily basis. In the language of group theory, QED is an U(1) gauge

theory, represented by spin-1
2 dirac fermion fields coupled to a spin-1 photon field. In simple words,

QED describes the interaction of charged spin-1
2 particles (quarks and charged leptons), mediated

by photons. As the most established fundamental theory, QED can be understood precisely in all

regions of energy.
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QCD is an SU(3) gauge theory that governs the interaction among color particles, i.e., quarks

and gluons. There are three different colors: red, blue and green. Unlike QED, QCD has some

features that make it challenging to understand the strong interaction. In QED, charged particles

interact by photons exchange, but the photons do not self interact since a photon is a neutral-

charged particle. On the other hand, gluons in QCD are not only mediating the interaction among

quarks but also interacting with each other since they are not color-neutral.

The strength of an interaction is determined by a quantity called coupling constant. The

coupling constant that appears in the interaction term of the Lagrangian dictates the interaction

strength among the field of particles. As an example, the QED Lagrangian

Lint = eψγµψAµ (1.1)

describes the charged particle interaction that is mediated by a photon field, denoted by Aµ with the

coupling constant e. Usually, it is more convenient to write the coupling in terms of a dimensionless

fine-structure constant:

αQED =
e2

4π
≈ 1

137
. (1.2)

The electromagnetic-interaction coupling-constant is much less than one. Thus, the QED cal-

culation can be performed perturbatively. Quite the contrary, the strong coupling constant, αQCD

is energy-dependent. Figure 1.2 shows the value of αQCD as a function of four-momentum transfer.

In the high energy regime, αQCD is small; hence a perturbative calculation can be performed.

Unfortunately, αQCD is exponentially growing as we go to the low-energy regime. This non-

perturbative regime is the region where the physics is less understood. The situation has led

to a worldwide effort to build particle accelerators that operate in the non-perturbative regime of

energy. One of the leading player is the Thomas Jefferson National Laboratory (JLab).

One of the prominent features in QCD is quark confinement. Quarks are never seen as isolated

particles; instead, quarks (and antiquarks) always form composite objects, which are called hadrons.

The large value of αQCD at low energy makes it impossible to break a hadron and isolate its

constituent quarks since this requires an infinite amount of energy. The origin of confinement is

still mysterious but qualitatively it can be explained by the antiscreening effect of gluons.

The coupling constant for both QED and QCD actually depends on the momentum transfer.

This dependence of the running coupling constant is due to the vacuum polarization effect. In QED,
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Figure 1.2: Measurements of αQCD at different four-momentum transfer scales from various ex-
periments. The results show evidence for the asymptotic freedom at large momentum transfer or
short distances. Image source: [1].

we have the following Feynman diagram where the photon propagator creates an electron-positron

pair.

Figure 1.3: The pair production of electron-positron from the photon propagator. Image source [2].

The creation of the electron and positron pairs provide a screening effect, a phenomenon that

also happens in dialectric medium, which reduces the effective charge. The running coupling

constant will increase with an increasing momentum transfer (probing shorter distances),

αQED = α(0)

{
1 +

α(0)

3π
ln

(
|q2|

(mc)2

)}
, (1.3)
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where α(0) = 1
137 . The correction is usually in the order of ≈ 10−6. Thus, αQED = 1

137 is still a

good approximation to be used in a calculation.

QCD also exhibits vacuum polarization, where the gluon line produces quark-antiquark pairs

as shown in Figure 1.3. However, since a qluon may interact with other gluons, the diagram shown

in Figure 1.4 also exists. This diagram produces an antiscreening effect opposite to QED. The

running coupling constant for QCD is

αQCD =
αQCD(µ2)

1 + (
αQCD(µ2)

12π )(11n− 2f) ln
(
|q2|
µ2

) , (1.4)

Where, n is the number of colors (3, in the standard model) and f is the number of flavors (6, in

the standard model). Therefore, QCD behaves in the opposite way of QED. The running coupling

constant will decrease with an increasing momentum transfer |q2|. At short distances, the ”strong”

force becomes relatively weak. This is the basis of what we call asymptoticfreedom, where we can

treat quarks as essentially free particles. David Gross, Frank Wilcek and David Politzer won the

Nobel Prize in 2004 for their work on asymptotic freedom.

Figure 1.4: The antiscreening effect due to the self-interaction among gluons. This effect explains
qualitatively the origin of the running coupling constant of QCD, αQCD. Image source [2].

1.1.3 Hadron Properties and Nomenclature

There are two groups of hadrons, classified based on their spin: namely, baryons and mesons.

Baryons have half integer spin and obey Fermi-Dirac statistics, while mesons have integer spin

and obey Bose-Einstein statistics. Hadrons are named based on the mass and a set of quantum

number; for instance, isospin (I), parity (P ), spin (S), orbital angular momentum (L), total angular
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momentum (J), charge conjugation (C) and flavor content. There are some naming schemes based

on the practical purposes:

1. In the early era of hadron spectroscopy, the newly discovered hadrons are named based on

the atomic spectroscopy notation, i.e 2s+1LJ ., For examples, the spectroscopy notations for

π and ω are 1S0 and 3S1.

2. Charge conjugation C is a good quantum number only for neutral mesons. Thus, mass

(MeV/c2), isospin I, and JPC are sufficient to identify a meson. For example, π’s are denoted

as JPC = 0−+ mesons with mass≈140 Mev/c2.

3. Nucleon (N) and Delta (∆) are baryons with quark content u and d. N states have I =
1
2 while ∆ states have I = 3

2 . All the N and ∆ states are denoted by N(mass)JP and

∆(mass)JP . For examples, a nucleon can be denoted as N(938)1
2

+
and the ground state of

∆ can be denoted as ∆(1232)3
2

+

1.2 Hadron Spectroscopy and Structure

There are some main tools, utilized by physicists to study the composite objects of strongly

interacting particles: hadron spectroscopy, the study of hadron structures and the hadronic jets

finding and reconstruction. Spectroscopy is the study of excited states, where, in this case, a

ground-state nucleon is excited by means of a high energy particle (photon, electron, pion, or

proton) beam. Mapping out the whole spectrum of excited states is the main goal of spectroscopy

research. Based on the properties of the observed excited states, physicists create models to explain

the underlying mechanism behind the emerged pattern.

1.2.1 Pre-QCD Strong Interaction Models: Regge Theory

In the early 1960s, before the discovery of quarks and QCD, physicists utilized quantum scatter-

ing theory to understand high-energy scattering data. Regge-pole theory was introduced in particle

physics and, up to present time, is still widely used for descriptions of the high-energy interactions

of hadrons and nuclei. Named after Tulio Regge, the Regge approach establishes an important

connection between high-energy scattering and the spectrum of particles and resonances.

The transition of a closed system of particles from an initial state |i〉 to a final state |f〉 is

described in quantum theory by the S matrix:

|f〉 = S |i〉 , (1.5)
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where the matrix element of the S matrix:

Sfi = 〈f |S |i〉 (1.6)

can be represented in the form

Sfi = δfi + i(2π)4δ4(Pi − Pf )Tfi. (1.7)

Tfi is called the transition (scattering) amplitude from state |i〉 to state |f〉. For a spinless particle,

Tfi is a function of the invariant Mandelstam variables:

s = (P1 + P2)2 = (P3 + P4)2, (1.8a)

t = (P1 − P3)2 = (P2 − P4)2, (1.8b)

u = (P1 − P4)2 = (P2 − P3)2. (1.8c)

Here, for a case of binary reaction, Tfi is a function of two variables: Tfi(s, t) or equivalently

Tfi(s, cos θ). According to the partial wave analysis technique, the transition amplitude can be

expanded to the form

Tfi ∝
∞∑
l=0

(2l + 1)fl(s)Pl(cos θ). (1.9)

The crossing symmetry principle also allow us to write the partial wave as a function of t, fl(t).

Suppose the fl(t) in t-channel reaction has a singularity in the form

fl(t) =
r(t)

l − α(t)
, (1.10)

and α(t) is Taylor expanded around t = tR ≡M2
R, then

α(t) ≈ Reα(tR) + i Imα(tR) + α′(tR)(t− tR). (1.11)

If we assume that Reα(tR) = lR, then

flR(t) ≈ r(t)

lR − [lR + i Imα(tR) + α′(tR)(t− tR)]
. (1.12)

According to the optical theorem that was derived from the unitarity principle, the amplitude

of a partial wave is proportional to its imaginary part

|fl(t)|2 = f∗l (t)fl(t) ∝ Imfl(t) =
1

2i
(fl(t)− fl(t)

∗). (1.13)
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Figure 1.5: Some of the meson trajectories. The trajectories are almost linear, connecting the mass
and spin of the particles. High-energy particles scattering is described by the t-channel exchange
of particles within trajectories. Image source [3]

Therefore,
r

l − α(t)
− r∗

l − α(t)∗
∝ 2i

rr∗

(l − α(t))(l − α(t)∗)
. (1.14)

Thus, this proportionality is valid if

r = r∗, (1.15)

and

Imα(t) ∝ r(t). (1.16)

Therefore,

flR(t) ≈ Imα(t)

α′(tR)(t− tR) + i Imα(tR)
. (1.17)

Or we can write this as

flR(t) ≈ 1

M2
R + t+ iMRΓ

, (1.18)

where MRΓ ≡ Imα(tR)
α′(tR) . In conclusion, Regge poles in the physical region of the t-channel correspond

to a Breit-Wigner resonance with Reα(t) = lR (spin of exchange particles). Thus, all strongly

interacting particles fall into groups of linear trajectories that relate the mass of the particles and

their spin.
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1.2.2 Baryon Spectroscopy

A baryon is a type of hadron with half-integer spin that obeys Fermi-Dirac statistics. A normal

baryon consists of three quarks with three different colors, which establishes a colorless object.

Spectroscopy of baryons, which means mapping out the spectrum of the excited states (resonances)

of the baryons, is an essential tool for studying the underlying dynamics behind the confinement.

To describe the spectrum, physicists start with the assumption that the constituents of baryons

(partons) obey SU(N) group symmetry, where N is the number of quark flavors. Some models

differ in the origin and dynamics of the excitation. For example, in the Constituent Quark Model

(CQM), the origin of the excitation is the orbital angular momentum and the harmonic oscilla-

tor potential. CQM, as well as Lattice QCD, are two approaches (or methods) that explain the

underlying dynamics of hadrons and their resulting resonance spectrum.

Constituent Quark Model. In this model, a baryon is considered a system of three con-

stituent quarks, which constitutes the effective degrees of freedom of the system. Those quarks obey

the SU(N) flavor symmetry, where N = 3, if we only consider the three lightest quarks (u, d, s).

The full wave function of a baryon is given by

ψ = ψcolor ψflavor ψspin ψspace. (1.19)

The overall wave function should be antisymmetric since baryons obey Fermi-Dirac statistics.

The color wave function, ψcolor is antisymmetric; hence, the remaining wave function, ψflavor ψspin ψspace

should be symmetric.

The spatial part of the wave function for the three-body system (baryon) is described in terms

of two harmonic oscillators, ρ and λ, as shown in Figure 1.6. The quantum excitations consist of

angular excitations, which we denote as lρ and lλ, and radial excitations, denoted as nρ and nλ.

The total quantum numbers of an excited baryon can then be written as

N = 2(nρ + nλ) + lρ + lλ. (1.20)

The SU(3)flavor group can be combined with the SU(2)spin group into SU(6)flavor× spin. The

multiplets formed by qqq combinations containing the u, d and s quarks are

6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A, (1.21)
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Figure 1.6: Model of a baryon used in a Constituent Quark Model. According to this model, a
baryon is an object with two independent oscillators, ρ and λ, which describe the spatial part of
the wave function. Image source [7].

where S, M and A represents symmetric, mixed, and antisymmetric wave functions. These SU(6)

multiplets decompose into flavor SU(3) multiplets as follows:

56 = 410⊕ 28 (1.22a)

70 = 210⊕ 48⊕ 28⊕ 21 (1.22b)

20 = 28⊕ 41. (1.22c)

The superscript (2S+ 1) gives the net spin of the quarks for each particle in an SU(3) multiplet. The

resonances can then be classified into different excitation bands based on the quanta of excitations.

The supermultiplets can be specified by (D, LPN ), where D is the dimensionality (56, 70 or 20), N

is the quanta of excitation,L is the total angular momentum, and P is the parity. The ground state

baryons, N = 0, contain one supermutiplet (56, 0+
0 ) since only the 56plet has a symmetric wave

function. These ground state baryons decompose into a spin-1
2 octet (28) and a spin-3

2 decuplet

(410). The members of the baryon octet and decuplet are shown in Figure 1.7.

Nucleons (protons and neutrons) and ∆’s are baryons with the quark content u and d. The

nucleon is a member of octet (8) and has I = 1
2 while the ∆ baryon is a member of decuplet (10)

and has I = 3
2 . The spectrum of nucleon resonances (N∗) and ∆ resonances (∆∗) are built based

on the symmetric/antisymmetric properties of the spatial and the SU(6) multiplets wave function.
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Figure 1.7: The members of ground state baryons: baryon octet (left) and baryon decuplet (right).
The symbol Q denotes the electric charge and the symbol S denotes the strangeness. Image source:
Wikipedia.

1. Excitation band 1: The 1st excitation, N = 1, has one quantum of angular excitation,

which is carried by the ρ or λ oscillator (nρ = 1 or nλ = 1). The first angular excitation has

a mixed symmetry wave function; therefore, the combined wave function of flavors and spin

should also have a mixed symmetry in order to create an overall symmetric wave function,

which is the 70 multiplet. The 70 multiplet contains one spin-1
2 decuplet, two octets (S = 1

2

and S = 3
2), and one spin-1

2 singlet. The 1st excitation band has L = 1 and P = −1.

Since the nucleon is an octet member, the N∗ resonances are formed with the possible values

of J = 1
2 ,

3
2 for L = 1 and S = 1

2 and J = 1
2 ,

3
2 ,

5
2 from the coupling of L = 1 and S = 3

2 .

The ∆ is a decuplet member, thus the ∆∗ resonances are formed with the possible values of

J = 1
2 ,

3
2 from the coupling of L = 1 and S = 1

2 .

Therefore, the first excitation band contains five N∗ resonances and two ∆∗ resonances.

2. Excitation band 2: The 2nd excitation band can be formed from three different excitation

modes according to equation 1.20:

• This band can have one quantum number of radial excitation and zero quantum number

of angular excitation (L = 0 and P = +1). The spatial wave function is symmetric;

hence, the combined wave function of flavors and spin should also be symmetric, which

is the 56 multiplet. This multiplet contains one spin-3
2 decuplet and one spin-1

2 octet.

Due to the coupling with L = 0, this excitation mode results in one N∗ (J = 1
2) and

one ∆∗ (J = 3
2).

• The band can also be formed when one of the oscillator carries two units of angular

excitation (L = 2 and P = +1). The spatial wave function of this mode is symmetric,
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hence it also requires to be coupled with 56 multiplet. The coupling with L = 2 result

in two N∗ (J = 3
2 ,

5
2) and four ∆∗ (J = 1

2 ,
3
2 ,

5
2 ,

7
2).

• It is also possible that both the ρ and λ oscillators carry one quantum of angular ex-

citation each. This gives L = 0, 1, 2. The spatial wave functions are mixed and an-

tisymmetric. The resulting N∗ and ∆∗ resonances are listed in the first five rows of

Table 1.1.

Table 1.1: N and ∆ states in the N=0,1,2 harmonic oscillator bands. LP denotes angular momen-
tum and parity. A, S and M denote the symmetry of the spatial wave function. This chart was
compiled in [9].

Lattice QCD. In the Lattice QCD (LQCD) framework, the non-perturbative QCD is solved

numerically on a discretized space-time ”lattice” with periodic boundary conditions. The quark

fields are defined at the lattice site, and the gluon fields are introduced on the links as a 3× 3

special unitary matrix to preserve gauge invariance. The Minkowski metric is converted to a 4-
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dimensional Eucledian metric by Wick rotations, which allows analytic continuation of the time

variable t to imaginary time it. The behavior of the continuum limit can be recovered by decreasing

the lattice spacing. The finite spacing and box-size naturally introduce ultraviolet and infrared cut-

offs, which regularizes the theory. Although these numerical calculations are very computationally

expensive, with recent technological advances in computation, LQCD has seen tremendous progress

in the prediction of the baryon spectrum, which is consistent with CQM in terms of the number of

predicted states.

Figure 1.8: The spectrum of nucleons and deltas from the Lattice QCD calculation obtained with
the latice spacing of 0.123 fm and the box-size of 2 fm [10].

1.2.3 Baryon Structure

The structure of the proton has been under investigation in hadronic physics since the early

20th century in order to understand the fundamental internal structure of matter. Thus, the study

of hadron structures is complementary to spectroscopy study. We need to understand, for example,

the internal structure of a nucleon as well as its excited states to obtain a coherent picture and a

complete knowledge of a nucleon. In fact, the study of proton structures led to the discovery of

quarks. If a proton were a point-like object, the cross section of the scattered relativistic electron

off the proton could be calculated by Mott, and would be expected to follow

(
dσ

dΩ
)Mott =

α2

4E2 sin4 θ
2

cos2(
θ

2
), (1.23)

where E and E′ are the energies of the incident and scattered electron, θ is the scattering angle in

the lab frame, and α is the fine structure constant. However, this calculation failed to agree with
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the experimental data at large scattering angles, as shown in Figure 1.9. As a result, Hofstadter

introduced the idea that the proton was not a point-like particle but had an internal structure. In

1950, Rosenbluth then introduced the concept of an electric form factor, GE and magnetic form

factor GM to describe the electric and magnetic distribution inside the proton.

Figure 1.9: Elastic electron-proton scattering measurement at Stanford University [11]. The ex-
perimental results show deviations from the Mott calculation based on the proton as a point-like
particle.

Because of the finite size of the proton, the cross section for electron-proton elastic scatter-

ing decreases rapidly with energy. Consequently, high-energy e−p interactions are dominated by

inelastic scattering processes where the proton breaks up,

e−p→ e−X. (1.24)

As shown in Figure 1.10, the hadronic final states resulting from the break-up of the proton

usually consist of many particles. Whereas e−p → e−p elastic scattering was described in terms

of the electron scattering angle alone (see equation 1.23), two kinematic variables are needed to

describe inelastic scattering. The form factors in elastic scattering were then replaced by two
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Figure 1.10: Inelastic electron-proton scattering where the proton break-up into multiple hadrons
in the final states. Image source [1].

structure functions, which are a function of two kinematic variables, F1(x,Q2) and F2(x,Q2),

where Q2 is the negative of the four-momentum transfer and x, or the Bjorken variable, is defined

as

x ≡ Q2

2p2q
. (1.25)

It expresses the ”elasticity” of the scattering process. x is always in the range of 0 < x < 1 and

the extreme case of x = 1 corresponds to elastic scattering. The first studies of structure functions

in inelastic e−p scattering were obtained in a series of experiments at SLAC. The differential cross

sections, measured over a range of incident electron energies, were used to determine the structure

functions. The experimental data, shown in Figure 1.11 reveal two surprising phenomena. The first

observation, known as Bjorken scaling, was that F1(x,Q2) and F2(x,Q2) are almost independent of

Q2. The lack of Q2 dependence of the structure functions is strongly suggestive of scattering from

point-like constituents within the proton. The second observation was that in the deep inelastic

scattering regime, the structure functions F1(x) and F2(x) satisfy the Callan−Gross relation

F2(x) = 2xF1(x). (1.26)

This relation can be explained by assuming that the underlying process in e−p inelastic scattering is

the elastic scattering of electrons from point-like spin-half constituent particles within the proton,

namely quarks. Therefore, the study of proton structure using deep inelastic scattering experiments

has led to the discovery of quarks.

One of the major goals in the recent study of nucleon structure is to understand the Spin

Crisis phenomenon. Protons are classified as fermions, or half integer spin particles, with quarks
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Figure 1.11: Structure function measurements from inelastic electron-proton scattering at
SLAC [12] and [14]. The experiment results show Bjorken scaling (left) and the Callan-Gross
relation (right). Image source [1].

also being fermions. This led to the assumption that the proton’s spin of 1
2 was the result of the

addition of the spins from the two up quarks and the down quark. But the EMC experiment at

CERN in 1987 concluded that the valence quarks only contribute about 30% to the total spin [15].

The total contribution to the nucleon spin can be written using spin sum rule

SN =
1

2
=

1

2
∆Σ + ∆G+ Lg +

∑
q

Lq, (1.27)

where ∆Σ is the contribution from the quarks spin, ∆G is from the gluons spin, and Lg and Lq are

from the gluons and quarks angular momentum, respectively. The contribution from the gluon spin

has been measured in PHENIX, STAR, and COMPASS but, currently, is in agreement with zero.

This result suggests that the orbital angular momentum of the quarks is the most likely candidate.

In order to study the quark orbital angular momentum, it is necessary to understand and probe

quarks inside the proton in three dimensions.

1.3 Experimental Status and Challenges in Baryon Spectroscopy

Baryon spectroscopy is a very difficult field to study. Unlike the atom, which can be excited

using domestic electricity, exciting a nucleon requires a large particle accelerator and a complex

detector system. Baryon resonances are also more unstable than atomic resonances, with their

typical lifetime of the order of 10−24 s for strongly decaying resonances. According to the Heisenberg

16



Figure 1.12: An example of the hydrogen spectrum. The discrete peaks are visible and easily
identified. Image source [54].

Uncertainty Principle, the energy of any unstable quantum state is spread over the range

∆E ≈ ~
τ
, (1.28)

where τ is the mean lifetime of the state. Therefore, the energy width turns out to be in the order

of 100 MeV, which is larger than the average separation between resonances, causing the states

to overlap. Thus, the baryon resonances are difficult to identify. Figures 1.12 and 1.13 show the

contrast between an atomic and baryonic spectra.

Figure 1.13: The cross sections of π+ and π− scattering off the proton and nucleon resonances that
have obtained a 4-star rating from the PDG 2006 [16]. The resonances are labeled using notation
L2I2J(M), where I is the isospin, J is the total spin, L is the orbital angular momentum of the pπ
system, and M is the mass of the resonances. The picture shows that the resonances are highly
overlap. Image source [54].

The severe overlap of the resonance states makes it impossible to simply go ”peak-hunting”

for their identification. However, the quantum numbers of each nucleon resonance determine the

angular distribution of its decay products. Thus, by measuring these decay distributions, it is

possible to identify nucleon resonance states. This technique to extract the nucleon resonances is

known as Partial Wave Analysis (PWA) [6].
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Figure 1.14: Predictions for the nucleon resonances spectrum from a constituent quark model and
the experimentally observed states. The blue lines represent the predicted states from [4] and
the red lines represent the experimentally observed states along with the star-rating as of PDG
2010 [17]. Many predicted states have not been experimentally observed. Image source [35].

Figure 1.14 shows the nucleon resonances expected from the CQM and the states that are

observed experimentally. A glaring problem is that the number of states predicted is much higher

than the number of excited states observed. This over-abundance of predicted states is called the

missing baryon resonances problem. The missing states are most noticeably missing at higher

energy, above 1.7 GeV, as shown in Figure 1.15.

The known excited states were observed up to 20 years ago mostly in the πN scattering ex-

periment. This leads to the question: have we not seen the ”missing” states because they couple

to the non-πN sector? A paper by Capstick and Roberts [5], indeed, predicted that some of the

unseen resonances have strong couplings to non-πN chanels. These predictions have instigated an

extensive worldwide program at several particle accelerator facilities to hunt for the missing states,

including at the Thomas Jefferson National Laboratory (JLab).
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Figure 1.15: The predicted N? states in a relativized quark model and the states identified in
experiments along with the star-rating indicated by full lines (three- and four-star rating), dashed
lines (two-star) and dotted lines (one-star) according to PDG 2016 [52]. Many predicted states at
above 1.7 GeV/c2 have not been experimentally observed.

Table 1.2 shows the known resonances observed in various decay channels. There are two

features that can be concluded from this table:

1. Vector-meson photoproduction is under-explored; and

2. Kaon-Hyperon (KY ) photoproduction channels are promising.

As spin-1 particles, vector mesons such as ω, ρ, φ are more difficult to analyze than pseudoscalar

mesons due to the additional degrees of freedom from the spin projection. Vector mesons play an

important role especially in photoproduction since they carry the same JPC = 1−− quantum

numbers as the photon. According to Vector Meson Dominance (VMD) model [13], the photon is

a superposition of the pure electromagnetic photon (which interacts only with electric charge) and

the vector meson since they share the same quantum number.
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Table 1.2: The status of nucleon resonances observed at various decay channels as of PDG 2016 [52].

The hyperon is a baryon that contains at least one s quark. The Bonn-Gatchina PWA group

has discovered a set of eight resonances from these channels. Since these channels are promising,

the KY and vector meson photoproduction channels are the main topic of this dissertation and

will be described in detail in the following section.

1.4 Vector Meson Photoproduction

1.4.1 Physical Observables in Vector Meson Photoproduction

A complete description of vector meson photoproduction requires 24 complex helicity ampli-

tudes. Two helicities are for the beam, two for the target, three for the vector meson and two for
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the recoil proton, amounting to a total of 2 × 2 × 3 × 2 = 24 scattering amplitudes. However,

parity invariance reduces the number of independent amplitudes to 12. This implies that we need

to perform many different experiments to fully determine the 23 independent real numbers needed

to completely describe the reaction γp → pV (the overall phase is irrelevant). These scattering

amplitudes are embedded in the cross section and the polarization observables.

For the reaction γp → pV , when only the beam and target polarization are measured, the

differential cross section reduces to the form [18]:

dσ

dxi
=σ0

(
1− δlΣ cos 2β + Λx(−δlH sin 2β + δ�F)− Λy(−T + δlP cos 2β)

− Λz(−δlG sin 2β + δ�E)
)
,

(1.29)

where xi are the kinematic variables and δl(δ�) denote the degree of linear (circular) polarization

of the beam. Λx,Λy and Λz are the components of the target polarizations with respect to the

reaction plane (which will be described in section 4.1.1). The angle β denotes the angle between

the direction of the linearly-polarized photon beam and the reaction plane. σ0 is the cross section,

which is associated with the likelihood of scattering when both the target and beam are unpolarized.

(Σ,T), and (H,F,P,G,E) are the single and double polarization observables.

There are also polarization observables associated with the decay distribution of the vector

meson called the Spin Density Matrix Elements (SDMEs). A density matrix is a matrix that

describes a quantum system in a mixed state, a statistical ensemble of several quantum states.

If the density matrix for a particle is known, then all quantum mechanical observables can be

calculated. The SDMEs of a vector meson then refer to the density of the vector meson’s spin

projections. For a particle with n states, in a given basis, each having wave function |ψ〉, the

density matrix is

ρ =
n∑
ij

aij |ψj〉 〈ψi| . (1.30)

Diagonal elements of the matrix, aii, represent the probability that the particle is in state ψi. Thus,

the decay angular distribution of the vector meson in its rest frame can be constructed using the

density matrix as
dN

d cos θdφ
= Mρ(V )M †, (1.31)
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where M is the decay amplitude and ρ(V ) is the spin density matrix of the vector meson. The

exact form of the SDME were derived by K. Schilling et al. [68] and will be described in detail in

section 4.3.

1.4.2 Photoproduction of ω Mesons

Figure 1.16: The invariant mass of M3π shows clear omega signals over a smooth background.

The ω meson is our vector meson of interest and the primary focus of this dissertation. The

ω has an observed mass of 782.59±0.11 MeV/c2, is a neutral particle and has isospin I=0, which

means that pω can only couple to states with I = 1
2 , i.e. N∗ states. Thus, it serves as an isospin

filter. The ω has a width of ± 8.49 MeV, which is relatively narrow compared to ρ meson (Γ ≈ 125

MeV) and which enables a clean detection above background.

Another advantage of studying this reaction is that ω photoproduction has a threshold energy

that lies in the higher lying third resonance region where many resonances are notably missing.

This reaction also has a large cross section and provides a lot of statistics.

The ω photoproduction has been experimentally studied for more than 40 years. In the 1970s

and early 1980s, ω photoproduction experiments were performed at SLAC [20] and Daresbury [21].

The unpolarized differential cross sections and SDMEs were measured at W ∈ [2.47, 2.9] GeV.

Recent advances in accelerator and detector technologies have inspired more measurements all over
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the world and have greatly improved the quality of the world database of this reaction. Table 1.3

summaries the previous measurements of ω photoproduction in different experiments.

Table 1.3: Previous measurements of various observables of ω photoproduction from different ex-
periments.

Year Experiment Observables Energy Range References

1970s SLAC and Daresbury dσ
d cos θωc.m.

, and ρ0 2.48 < Eγ < 2.96 GeV [20], [21]

2003 CLAS dσ
d cos θωc.m.

2.624 <
√
s < 2.87 GeV [22]

2003 SAPHIR dσ
d cos θωc.m.

, and ρ0 1.72 <
√
s < 2.4 GeV [23]

2008 CBELSA/TAPS Σ 1.1 < Eγ < 1.7 GeV [24]

2009 CLAS dσ
d cos θωc.m.

, and ρ0 1.7 <
√
s < 2.8 GeV [25]

2015 A2 dσ
d cos θωc.m.

1.1 < Eγ < 1.4 GeV [26]

2015 CBELSA/TAPS E and G 1.16 < Eγ < 2.24 GeV [27]

2015 CBELSA/TAPS dσ
d cos θωc.m.

, ρ0, ρ1, and ρ2 1.15 < Eγ < 2.5 GeV [28]

Several attempts to extract the underlying resonant contributions as well as the production

mechanism from the published data have been made by various group. The ω meson can be

photoproduced via an s-channel resonant process, where a proton is excited and forms a short life

N∗ state before it decays to pω. Others production mechanisms are non-resonant processes. An

example of this process is the t-channel meson and the Pomeron exchange.

Figure 1.17: Feynman diagrams for (left) t-channel pomeron exchange, (middle) t-channel π0 ex-
change and (right) s-channel, which is a resonant process. Image source [24]

All of the authors agree that at very high energies, Eγ > 20 GeV, ω photoproduction can

be successfully described as a t-channel diffractive process [33]: the photon converts to a vector

meson, which then scatters off the nucleon by the exchange of pomerons; these colorless objects

carry no charge and share the JPC = 0++ quantum numbers of the vacuum. At medium energies

4 < Eγ < 20 GeV, additional contributions from the t-channel exchange of Regge families is
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needed, and pion exchange is generally expected to dominate especially in the forward region.

Close to the reaction threshold in the baryon resonance regiome, N∗ states strongly contribute to ω

photoproduction. The Bonn-Gatchina (BnGa) coupled channels partial-wave analysis determined

the contributions of twelve N∗ resonances, along with their N∗ → pω branching ratios using data

from the CBELSA/TAPS experiment. The dominant contribution near the threshold was found

to be the N(1720)3/2+ resonance. M. Williams et al. [29] published the results of a partial-wave

analysis that described the high quality and statistics of differential cross section and unpolarized

SDMEs from CLAS. They found strong contributions from N(1680)3/2+ and N(1700)3/2− near

the threshold, a higher mass resonance N(2190)7/2−, and suggestive evidence for N(2000)5/2+.

The scattering amplitudes from both the resonant and non-resonant processes are entangled

with each other. Therefore, to disentangle the resonant contribution we need the phase information

from the scattering amplitudes as well as their magnitudes. The unpolarized cross section alone is

not enough to extract the resonant contributions without ambiguity since it only gives information

on the magnitude of the amplitudes. Additional polarization observables are required since they

provide information on the phase of the scattering amplitudes. Figure 1.18 shows an example of

the importance of a polarization observable. Polarization observables are sensitive to the presence

of a resonance. It shows the polarization observables Cx and Cz for the reaction γp → KΛ along

with the partial wave analysis solutions with and without the N(1900)P13 resonance. The presence

of the N(1900)P13 state highly improves the fit solutions.

Unfortunately, the published data on the γp → pω polarization observables in general lack

statistics. For instance, the first measurement of the polarization observable E for ω photopro-

duction reaction, as shown in Figure 1.19, exhibits large statistical uncertainties [27]. Therefore,

extracting the E observable for ω photoproduction using high quality data and better statistics is

one of the main goals of this analysis.

Understanding both resonant and non-resonant production mechanisms is equally important

to disentangle N∗ resonances contributions. The high statistics data in the energy range beyond

the resonances production regime (Eγ > 4 GeV) are required to study non-resonant production

mechanisms. Thus, providing high-quality statistical data on the γp→ pω differential cross section

and unpolarized SDMEs are also among the goals of this analysis.
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Figure 1.18: Double polarization observables Cx (black circle) and Cz (open circle) for γp→ KΛ.
The Cx (solid lines) and Cz (dashed lines) are the partial wave analysis results obtained (Left)
without the N(1900)P13 state and (Right) with the N(1900)P13 included in the fit [19]. Notice
that the solutions with the N(1900)P13 are highly improved.

1.5 Σ Hyperon Photoproduction

Photoproduction of nucleon resonances in their decay to strange particles also offers attrac-

tive possibilities. The strange quark in the particle generates another degree of freedom and gives

additional information not available from nucleon-nucleon scattering. For instance, due to the con-

servation of the strangeness, the photoproduction of kaons (strangeness = 1) is always accompanied

by the creation of hyperons (strangeness = −1). The channels involved in the production of K

mesons also give the opportunity to assess the validity of the SU(3) symmetry of the quark model

in describing the decay of the resonances. Some of the missing resonances are predicted to couple

strongly to KΣ and KΛ, which give another advantage for studying hyperon photoproduction chan-
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Figure 1.19: The first measurements of the double polarization observable E for the reaction
γp→ pω from CBELSA/TAPS collaboration [27].

nels. Our hyperon channel of interest is Σ+, which is photoproduced off the proton accompanied

by the production of K0.

1.5.1 Photoproduction of K0Σ+

By considering the spin states of the particles involved, the γp → K0Σ+ reaction is fully

described by 2 × 2 × 2 = 8 complex amplitudes. Parity invariance reduces this number to 4

independent amplitudes. The pseudoscalar nature of K0 simplifies the study of this reaction. The

complete characterization of these amplitudes depends upon the measurement of a limited number

of observables, listed in table 1.4.

Previously available cross section data for the photoproduction of K0Σ+ were published by the

ABBHHM collaboration in 1969 [30] and the SAPHIR collaboration in 2005 [31]. The CBELSA/TAPS
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Table 1.4: The spin observables for the photoproduction of a single kaon. This table was compiled
in [38]

collaboration [72], [73] and [74] then published the polarization observables and the unpolarized

cross sections in 2008, 2012 and 2014. Recent data on the polarization observable of K0Σ+ were

published by the CLAS collaboration [75] in 2013. All of the previous measurements are summa-

rized in table 1.5.

Table 1.5: Previous measurements of various observables of K0Σ photoproduction from different
experiments.

Year Experiment Observables Energy Range References

1969 ABBHHM σ 1.05 < Eγ < 5.9 GeV [30]

2005 SAPHIR σ 1.05 < Eγ < 2.6 GeV [31]

2008 CBELSA/TAPS dσ
dΩ , and P 1.05 < Eγ < 2.25 GeV [72]

2012 CBELSA/TAPS dσ
dΩ 1.05 < Eγ < 2.25 GeV [73]

2013 CLAS P 1.17 < Eγ < 3.5 GeV [75]

2014 CBELSA/TAPS Σ, and P 1.05 < Eγ < 2.25 GeV [74]

The available data of the K0Σ+ channel are of lower quality compared with other strange

decay channels such as K+Σ− and K+Λ. Both data on γp→ K0Σ+ and γp→ K+Σ0 are strongly

27



required to disentangle contributions from the the N∗ and ∆∗ resonances since these reactions

are isospin-related channels. The strong coupling strength is linked via SU(2) Clebsch-Gordan

coefficients

gK0Σ+p =
√

2 gK+Σ0p. (1.32)

The lack of K0Σ+ photoproduction data is another prime motivation for this analysis. We will

present measurements of differential cross sections and the recoil hyperon polarization for the

reaction γp→ K0Σ+. The data of this channel, as well as the γp→ pω channel, were collected at

Jefferson Laboratory, using the CLAS detector.
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CHAPTER 2

JEFFERSON LABORATORY, CEBAF AND THE

CLAS DETECTOR

The data used in this analysis were taken as part of the g9a and g12 run periods at the Thomas

Jefferson National Accelerator Facility (TJNAF), also referred to as Jefferson Laboratory or JLab,

in Newport News, Virginia. In ”g9a” and ”g12”, the ”g” refers to a photoproduction experiment,

the ”9a” implies that this was the first iteration of the ninth approved experiment, and the ”12”

indicate that this was the twelfth approved experiment.

The g9a experiment, a subset of the Frozen Spin Target (FROST) experiment, utilized a linearly-

or circulary-polarized photon beam in combination with a longitudinally-polarized target. The data

for the g9a experiment (FROST-g9a) were taken between November 2007 and February 2008. In

this analysis, the data with a circularly-polarized photon beam were used.

The g12 experiment was a high-luminosity and high-energy photon run. The data were collected

in 44 days of beam time from April to June 2008. The experiment was dedicated to several analyses

ideas with the main goal to search for meson resonances in multi-particle final states by performing

partial wave analysis.

There are currently four experimental halls at JLab, denoted as A, B, C and D, along with the

CEBAF electron accelerator, a free-electron laser and a number of other research facilities. Both

the g9a and g12 run periods were conducted in Hall B. The detector used for the experiments was

the CEBAF Large Acceptance Spectrometer (CLAS). CLAS was a nearly-4π spectrometer and

optimized for the detection of multi-particle charged final states.

The accelerator has been recently upgraded to deliver continuous electron beams with energies

up to 12 GeV and the CLAS spectrometer has been removed and replaced with the new CLAS12

detector. However, at the time of the FROST and g12 experiments, the accelerator was designed

to deliver beam energies only up to 6 GeV. Therefore, we will describe the facility in the follow-

ing section as it was when the experiments were conducted at CLAS using the 6 GeV electron

accelerator.
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Figure 2.1: An aerial view of Jefferson Lab. Hall B is seen at the bottom of the figure, in the
middle of the three mounds. Image source [41].

2.1 CEBAF

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is an

electron accelerator based on Superconducting-Radio-Frequency (SRF) technology dedicated to

probing the atomic nucleus and to exploring QCD in the confinement regime. CEBAF has a

racetrack geometry with a circumference of about 7/8 of a mile. Superconducting cavities are non-

resistive, allowing CEBAF to obtain a 100% duty factor since the cooling time between beam spills

is not required. CEBAF is capable of providing electron beams simultaneously to four different

experimental halls.

The electrons were produced in the injector by illuminating a GaAs photocathode with pulsed
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lasers at a frequency of 499 MHz, so that each hall received electron bunches every 2 ns. After

extraction from the photocathode, the beam was accelerated to 5 MeV by the first two of the SRF

cavities. Finally, there are two accelerating modules, each containing 8 SRF cavities, that boost

the energy of the electrons to a final energy, typically 23 to 68 MeV. An optical chopper was used

to cleanly separate the two-ns bunches prior to sending the beam to CEBAF’s recirculating linear

accelerators (LINACs).

Figure 2.2: A schematic view of CEBAF and its major components, clockwise from the top, a
module in the LINAC, a steering magnet, and a part of the RF separator. Image source [41].

The two LINACs were used to accelerate the electrons by 600 MeV per pass. The recirculation

arcs on either end of the linacs allowed the electrons to make up to five passes through the LINACs,

achieving the maximum energy of 6 GeV. The acceleration gradient for the electron beam was pro-

vided by inducing a standing radio-frequency electromagnetic wave inside the niobium cavities.

The RF standing waves were kept in phase with the electron bunches, resulting in a continuous

positive electric force on each bunch as it passed through the cavities. To maintain the supercon-

ductivity, each cavity was maintained in a 2K heat bath by immersing it in liquid helium. Each

linac consisted of 21 cryomodules, where each module was comprised of 8 Niobium RF cavities.

Thus, there were 168 cavities per LINAC.

After passing through one LINAC, the electron beam is bent in the recirculation arcs throughs

a series of dipole magnets and directed to the other LINAC, which further accelerate the electrons.

The beam was divided into five sub-beams by energy such that electrons of different energies can

pass through a different recirculation arc before re-entering the LINACs. Once a beam of electrons
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Figure 2.3: A pair of superconducting RF cavities with its support hardware and beam-pipe before
transferred to the LINAC. Image source [41].

has passed the LINACs the desired number of times, it is directed to the designated hall using an

RF separator. The electron beam current in the g12 experiment was set up to 65 nA while the

FROST experiment was maintained at lower currents, within the range 5 - 14 nA, mainly to sustain

the target polarization.

Figure 2.4: A diagram of an RF cavity with the charge gradient produced. As the electrons travel
from one cell to the next cell, the RF-phase induces the appropriate charge distribution to maintain
positive acceleration on the electron. Image source [41].

2.2 The Photon Tagger

As the electron beam entered Hall B through the RF separator, the conversion of an electron into

a photon was handled by the Hall B tagging system, which is shown schematically in Figure 2.5.

The electron beam produced a photon beam by means of bremsstrahlung radiation. When the

electron beam interacted with a radiator, the electromagnetic field of the radiator’s nuclei slowed

the electrons down, which led to the emission of photons to conserve the total energy and momentum

of the system. The choice of the radiator’s material depended on the desired photon polarization,

but typical radiators have high atomic numbers to reduce photon contamination from electron-

electron scattering. The g9a and g12 experiments used a gold (Au) foil of 10−4 radiation length.
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After passing through the radiator, the beam was a mixture of recoil electrons, photons and non-

interacting electrons.

The tagger magnetic spectrometer allowed for bending the non-interacting electrons away from

the beam line into a beam dump. The tagger magnetic spectrometer was a dipole producing

a maximum magnetic field of 1.75 T, which was the field value required to transport the full-

energy (non-interacting) electrons. Since the energy transferred to the nucleus was negligible, the

bremsstrahlung reaction obeys the energy conservation relation:

Eγ = E0 − Ee, (2.1)

where E0 is the incident energy of the electron, Ee is the energy of the recoil electron and Eγ is the

energy of the emitted bremsstrahlung photon. Since E0 can be measured from the accelerator, a

measurement of the recoil electron energy in the tagger spectrometer provides a determination of

the photon’s energy and time.

The tagger spectrometer consisted of two hodoscope planes, each made of overlapping arrays

of scintillators. The first scintillator plane, referred to as the E-counter, was used to determine the

momentum of the recoiling electrons since the radius of the electron’s curvature due to a magnetic

field is proportional to the electron’s momentum. Thus, by knowing the exact position on a plane,

the momentum and energy of the electron can be determined. The E-counter was made of 384

plastic scintillators that are 20-cm long and 4-mm thick, with widths varying from 6 to 18 mm.

The paddles were arranged in an overlapping fashion, creating 769 separate channels to determine

the electron’s position and, hence, its momentum and energy. The energy resolution of the E-

counter was 0.1 % of the incident electron energy.

The second plane of scintillators, referred to as the T-counter, were used to make accurate

timing measurements of the recoiling electrons, and hence the associated photon time. The T-

counter was positioned in parallel and 20 cm behind the E-counter. This counter was comprised of

61 scintillators, 2-cm thick, which varied in length from 9 cm to 20 cm, resulting in 121 channels,

allowing for a timing resolution of 110 ps. The spectrometer was able to tag photons ranging from

20 - 95 % of the incident electron beam energy. To trim the beam halo, the photon beam also

passed through a pair of collimators before it reached the CLAS detector.
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Figure 2.5: Schematic diagram of the tagger spectrometer. The blue dot-dashed lines are the E-
counters and the green dashed lines are the T-counters. The dashed red lines are the electrons
that have not lost any energy. The dashed red lines are the scattered electrons that radiated
a bremsstrahlung photon and carry the fractional energy of the non-scattered electron. Image
source [39]. Image was adapted from [42].

2.3 The Frozen Spin Target and the g12 Cryotarget

2.3.1 The Frozen Spin Target (FROST)

A polarized target is needed to align the spin of the target nuclei in a particular direction by

some external means. The g9a experiment used a frozen spin butanol (C4H10OH) target with

longitudinally polarized protons. This Frozen Spin Target (FROST) also could be transversely po-

larized (for the g9b experiment) and had a nearly-4π angular coverage for the scattering angle. This

angular coverage was achieved since only a small holding magnetic field was required to maintain

the polarization for a long period. The FROST target also could reach degrees of polarization over

80 %.

A technique called Dynamic Nuclear Polarization (DNP) was used to polarize the protons within

the FROST material. The polarization of the target in the g9a experiment began with the free
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electrons being polarized according to the Boltzman distribution:

P = tanh

(
~µ · ~B
kT

)
. (2.2)

Therefore, a high magnetic field and low temperatures were required to achieve a high degree of

polarization. This process was performed at temperature of approximately 0.3 mK using a 5 T

polarizing magnet. Then the spin polarization of the electrons was transfered to the nuclei using

microwaves.

Figure 2.6: A cross section of the target area of FROST and its main components. Image source [38].

The DNP phenomenon was theoretically predicted by Albert Overhauser in 1953. It was first

realized using the concept of the Overhauser effect, which is the perturbation of nuclear spin level

population when electron spin transitions are saturated by the microwave irradiation. Thus, DNP

consist of transferring high-spin polarization from the electrons of paramegnetic impurities to the

host nuclei by means of microwave irradiation close to the Electron Paramegnetic Resonance (EPR)

frequency.
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Figure 2.7: The FROST magnets clockwise from the top: the longitudinal holding magnet, the
transverse holding magnet, and the polarizing magnet. Image source [43].

Once the polarization was complete, the microwave generator was switched off. In order for

the spin polarization of the butanol target to be frozen, the target needed to be cooled below 50

mK. The FROST used a 3He/4He dilution refrigerator to reach this temperature. After the target

was in the ”Frozen Spin Mode”, a relatively small holding magnet of 0.5 T and these extremely

low temperatures were applied to sustain the target polarization. The holding magnet produced

a magnetic field, either parallel or anti-parallel to the beamline. Since the beam had a heating

effect on the target and raised the temperature of the target, the target polarization decreased

exponentially the target and was required to be regularly re-polarized every 4 to 5 days after the

polarization decayed to about 50 % of its initial value.

The g9a experiment utilized butanol (C4H9OH) as the main target materials. The protons in

the hydrogen atoms were polarized, but the protons bound within the nuclei of carbon and oxygen

atoms were not polarized. Thus, events from these bound nucleons were considered background

events. A graphite (carbon) target, and a polyethylene (CH2) were also placed downstream of

the butanol target to determine the contribution from bound nucleons and for various systematics

checks.
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Figure 2.8: The polarization schedule for the FROST. Image source [43].

2.3.2 The g12 Cryotarget

CLAS was designed such that the ”Target Cell” could be moved, removed and replaced according

to an experimental advantage. Target cells with various shapes and sizes have been employed by

experiments using the CLAS detector. The g12 experiment used a cylindrical cell made of kapton.

The cell was 40-cm long with a radius of 2 cm. The target material used for the g12 experiment

was liquid Hydrogen (LH2). The g12 physics motivation required the experiment to increase the

forward angular coverage of the detector. For this reason, the g12 target cell was moved upstream

of the CLAS center to increase the forward geometric acceptance of the detector. The pressure and

temperature of the target was measured hourly to calculate the density of the liquid Hydrogen.

This density is an important quantity to measure the cross sections.

Figure 2.9: Target cell used during the g12 run period, placed 90 cm upstream of the CLAS center,
and filled with liquid hydrogen. Image source [44].
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2.4 The CLAS Detector

The CEBAF Large Acceptance Spectrometer (CLAS) was the main detector in Hall B. It was

primarily used to detect charged and multi-particle final states produced by interactions of the

photon beam with the target at the CLAS center. CLAS had an almost 4π coverage in solid angle,

and was almost 10 m in diameter. The CLAS spectrometer was a multi-layered arrangement of dif-

ferent kinds of particle detectors arranged symmetrically around the beam axis. This arrangement

of the detectors provided an angular coverage of 8◦ to 142◦ in the polar angle. The superconducting

toroidal magnet was a vital piece of the CLAS detector. CLAS was azimuthally divided into six in-

dependent sectors. Each sector was composed of a start counter, drift chambers, and time-of-flight

scintillators. CLAS also had Cerencov counters and electromagnetic calorimeters in the forward

region, but these were not used in our analysis and, thus, will not be discussed here.

Figure 2.10: Schematic diagram of the CLAS spectrometer showing the major subsystems.
This spectrometer, approximately 10 m in diameter, was housed in experimental hall B. Image
source [45].

2.4.1 Start Counter (ST)

The start counter (ST) was the first detector to detect charged particles traveling from the

target region. It was located close to the center of the CLAS spectrometer and directly surrounded
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the target. The start counter provided a precise start time for every trigger recorded and time of

the hadronic interaction.

The start counter was divided into six sectors, matching the six-sector geometry of the CLAS.

Each sector consisted of four scintillator paddles, each coupled to an acrylic light guide. A charged

particle entering the paddle produced light inside the scintillator and the light then travelled into a

light guide, which was attached to a Photo Multiplier Tube (PMT). At the PMT, the photo-signal

was collected, converted and amplified for later use in the analysis. The start counter also served

a crucial role in the trigger system.

Figure 2.11: A cross section cut along the beamline of the start counter, depicting the labeled
components and the angular coverage when placed at the center of CLAS. Image source [39].

2.4.2 Superconducting Toroidal Magnet

The superconducting toroidal magnet, or torus magnet, generated a magnetic field that caused

charged particles to travel along a non-linear path through the drift chambers, a tracking detector

discussed in the next section. The torus magnet bent the particles toward or away from the beamline

without changing their azimuthal angles. The magnet was approximately 5 m in diameter and 5

m in length, and it utilized six kidney-shaped superconducting coils, each separated at 60◦ angles

in the azimuthal direction.

Each of the six coils had four layers of 54 turns of aluminum-stabilized NbTi/Cu conductors.

The map of the magnetic field produced by the torus is shown in Figure 2.13. The main field was

in the φ direction with a deviation from a pure φ field close to the coils. The maximum designated
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Figure 2.12: The CLAS torus coils in Hall B before installation of the rest of the detectors. Image
source [41].

current in the torus coils was 3860 A. However, the current was limited to 1920 A during the g9a

experiment, and was limited to 1930 A during the g12 experiment. The magnet was cooled down

to 4.4 K using liquid helium running through cooling tubes at the edge of the windings.

Figure 2.13: Strength contours of the CLAS magnetic field in the midplane between the two coils.
The target position for the g12 experiment is also shown. Image source [47].

2.4.3 Drift Chambers (DC)

The special wire-chambers known as Drift Chambers (DC) were used for tracking the charged

particles as they traveled through the field generated by the torus magnet. The chambers occupied

most of the CLAS volume and were filled with a mixture of 90% Argon an 10 % CO2. The charged
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particles interacted and ionized the gas mixture via collisions or electromagnetic interactions. The

ionized particles were then quickly collected by wires maintained at a potential difference. This

flow of current in those particular wires told us the position and trajectory of the particles. The

momentum of the charged particles could then be determined from their trajectory:

p = qBR, (2.3)

where B is the magnetic field, R is the radius of the trajectory and q is the charge of the particle.

The charge was determined by observing whether the particle was bent towards or away from the

beam line.

Figure 2.14: A cut away diagram of CLAS showing the arrangement of the drift chambers. The
kidney-shaped dashed lines outline the location of the torus coils. Also shown are the trajectories
of two charged particles travelling through DC in different sectors. Image source [48].

The drift chambers were divided into six sectors and each sector consisted of three regions,

as shown in figure 2.14. Region 1 (R1) was located close to the target in a low magnetic area.

Region 2 (R2) occupied the space where the magnetic field was the strongest. Region 3 (R3) was

positioned outside the coil, in a region of zero magnetic field. Each DC region was divided into

two separate superlayers, and each superlayer consisted of six layers of drift cells. In total, about
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13,000 wires were strung to the cells of the Drift Chambers. The drift cells consisted of a 20 micron

gold-plated tungsten sense wire in the center of a hexagonal arrangement of six 140 micron gold-

plated aluminum alloy field wires. The sense wires were maintained at a positive potential and the

field wires at a negative potential. A high voltage system was applied to all wires in the chambers.

Figure 2.15: A schematic diagram showing the Region 3 superlayers of the drift chambers. Sense
wires are at the center of each hexagon and the field wires are at the vertices. The lines connecting
the vertices of the hexagons are not real. The shaded region shows a charged particle’s trajectory
as it has ionized the gas and is recorded by the hexagonal cells. Image source [48].

2.4.4 Time-of-Flight Scintillators

The time-of-flight (TOF) scintillator paddles measured the time information of charged particles

crossing the drift chambers. The time information measured from the TOF paddles combined with

the hadronic interaction time provided by the start counter gives us the ”time-of-flight” of the

particles. In addition to the track length that was calculated by using the information from the

drift chambers, the velocity of the particles, β, was determined. Once we have β and p, the mass

of the particle was calculated, and hence identified as pions, protons, kaons, etc.

The TOF paddles were located radially outside the tracking system and comprised of six panels,

one for each sector, at a distance of about 4 meters from the center of the CLAS. Each panel

contained 57 scintillator paddles of varying lengths and widths but of a uniform thickness of 2 inches.
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Photons were created when a scintillator was hit by particles. The signals from the scintillators

were then collected via PMTs mounted at each end of the tubes. The timing resolution of each

scintillator is between 80 and 160 ps, depending on the length of the paddle.

Figure 2.16: Diagram of the TOF scintillation counters for one CLAS sector, with PMTs boxed in
yellow and a whole scintillator boxed in red. Image source [39]. Image was adapted from [49].

2.5 Beamline Devices

The quality of the beam was monitored using a number of beamline devices. These devices

were included in the upstream and downstream beamlines. The upstream devices included Beam

Position Monitors (BPMs), harps and a M/oller Polarimeter. The Beam Position Monitors (BPMs)

operated using current induced by the beam. The BPM current was used to calculate the x and y

positions of the beam. The profile of the electron beam was measured using harp scanners made of

tungsten and iron crossed wires. Electrons that were scattered by the wires were detected by PMT

arrays arranged around the beam line upstream from CLAS. The polarization of the electron beam

was measured by the M/oller Polarimeter. M/oller measurements were performed in special runs.

In the downstream beamline, a total absorption shower counter (TASC) was used to measure

the photon flux. It consisted of four lead glass blocks, coupled to a PMT, with 100% photon

detection efficiency. A low beam current, less than 100 pA, was required to measure the photon

flux. Thus, special normalization runs were taken periodically during the experiment.
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Figure 2.17: A typical harp scan to measure the electron beam profile. Shown are the x and y
profiles of the electron beam just before hit the tagger. The orange lines is a Gaussian fit to the
data. Image source [50].

2.6 Triggering and Data Acquisition

CLAS and its subsystems had their own electronic systems that constantly read out signals.

These electronic signals were generated in the PMTs, which were connected to various scintillators,

the current in the DC wires, and other instruments in the hall. The signals were then converted into

digital numbers using Analog to Digital Converters (ADCs), Time to Digital Converters (TDCs)

and other devices. All the analog signals from the CLAS detectors were digitized by FASTBUS and

VME modules in the Read-Out Crates (ROCs). These ROCs were controlled by a central Data

Acquisition System (DAQ), which was managed by the CEBAF Online Data Acquisition (CODA).
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Due to the limitation of the data acquisition, ”triggers” were employed in the experiments.

A trigger system also used to maintain quality control since a signal in a single detector did not

necessarily corresponded to a physics event of interest. A number of unwanted sources, such as

cosmic radiation, electronic noise or a malfunctioning detector could produce signals. Therefore,

the main job of the trigger was to decide which set of signals constituted an interesting physics

event. Triggers required the detector hits to satisfy a predefined set of conditions for various CLAS

systems within a short window of time. When the conditions of the trigger were satisfied by an

event, the DAQ then recorded the event data to the tape.

The g9a experiment used a trigger that required at least one charged particle that made a hit

in both start counter and time-of-flight scintillators in the same sector. The g12 experiment was

the first Hall-B experiment to implement a Field Programmable Gate Array (FPGA) processor to

handle the trigger logic of the detectors. The FPGA system enabled the ability to modify the trigger

quickly during the experiment. Thus, there were different trigger setups for different groups of runs

in the g12 experiment. The main production trigger for the g12 data that we analyzed, which are

the run periods of 56520 to 56646, required tracks in two distinct sectors of CLAS in conjunction

with a hit in the tagger where at least one of the tagged photons had an energy ≥ 3.6 GeV.

A track was considered a true event when a hit was registered in the start counter and the

time-of-flight scintillators (ST X TOF) of a CLAS sector within a short window of time (≈ 150 ns).

The trigger also required at least one photon with energy above 3.6 GeV, or the first 25 tagger

paddles registered a hit if only two tracks in two different secctors ((ST X TOF) X 2) were recorded

during the trigger window. The photon energy requirements were encoded in the tagger Master

OR (MOR) Boolean condition. Bit 12 was added in addition to the main production trigger where

there was no photon energy requirement if the event had three tracks in three different sectors ((ST

X TOF) X 3).
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Figure 2.18: The main production trigger diagram, where ST X TOF hits are registered in two
distinct CLAS sectors in conjunction with a hit in the first 19 tagger paddles. Image source [39].

Table 2.1: Trigger configuration for the g12 experiment from runs 56363 to 58594 and 56608 to
56647 [46]. (ST X TOF)i indicates a coincidence between a start counter and time-of-flight hit in
the ith sector. An added X2 or X3 indicates the multiple coincidences of the ST and TOF hits,
which are in two or three different sectors. MORA and MORB represent coincidence with tagger
hits within a certain energy range, as specified in table 2.2
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Table 2.2: Master-OR definition for g12 [46]. The TDC counters were used in the trigger. T-counter
number 1 corresponds to the highest energy photon of approximately 5.4 GeV.
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CHAPTER 3

EVENT SELECTION

3.1 The CLAS-g9a and CLAS-g12 Data Set

The information collected from the detectors and included in the raw data consisted of QDC

(Charge to Digital Convertor) and TDC (Time to Digital Converter) channel IDs and values. In

a first step, the data had to undergo reconstruction, or be cooked. This process converted the

data into physical quantities like particle IDs, positions, angles, energies, and momenta. The data

calibration was carried out independently for each detector component of CLAS. After the detectors

had been calibrated and the particle tracks had been reconstructed, the data were made available

for physics analysis. Each event had its information organized in CLAS data banks 1. These data

banks contained not only the properties of the particles involved in a reaction but also information

about detector hits.

Here we list the most relevant data banks that we used in our analyses:

1. PART – This bank contained most of the details about the detected particles, such as the

particle IDs, 4-vectors, vertex of each particle, and other information from various detectors.

2. TAGR – In this bank, information about all incident photons was stored, e.g. the energy

of the photon(s), the time of the photon(s) after the reconstruction in the Tagger, the time

of the photon(s) after the RF correction, the status of the photon(s) (used to identify those

which were not reconstructed properly), and the E - and T - counter ID information of the

corresponding scattered electron.

3. TBER – Time-based tracking error bank containing fit parameters and the covariance matrix.

4. TBID – Bank containing information on time-based particle ID (including β (= v
c ) values).

5. TGBI – Trigger bank; it also stored polarization information, e.g. the helicity bit.

1http://clasweb.jlab.org/bos/browsebos.php?bank=gpid&build=64bit/STABL
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3.1.1 The CLAS-g9a Data Set

The data for the g9a experiment were taken between November 3th, 2007 and February 12th,

2008. The circularly-polarized photon data set is categorized into two parts according to the

electron beam energy: one is the data using Ee = 1.645 GeV and another is using Ee = 2.478 GeV.

These data are broken up into seven different periods as shown in table 3.1

Table 3.1: The circularly-polarized photon dataset of the g9a experiment classified according to
the electron beam energy and run numbers.

3.1.2 The CLAS-g12 Data Set

The data for the g12 experiment were taken between April 1st and June 9th, 2008. The data set

was further divided into ten different groups of runs according to different trigger configurations.

Table 3.2 shows the different g12 trigger configurations. We used only Period 2 (starting from

run 56520) for our analyses at FSU. For these data, the trigger required either (at least) three

charged tracks with no restrictions on the photon energy or only two tracks with the additional

requirement of having at least one photon detected with an energy above 3.6 GeV. Since our

primary motivation initially was to extract the ω (and π+π−) cross sections with high quality, we

decided not to mix trigger configurations and thus, avoided the prescaled data and those using an

Electromagnetic Calorimeter (EC)-based photon or lepton trigger (Period 3 - 8). Period 1 suffered

from lower statistics and using it would not have significantly improved the statistical uncertainties

of our results. Moreover, this period switched from a three-track requirement to a two-track

requirement at a different energy and also used a different beam current.
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Table 3.2: The different trigger configurations used in g12 (from the g12 wiki and Ref. [46]).

Period Runs Trigger Configuration

1 56519 and earlier not prescaled, trigger change at 4.4 GeV

2 56520 - 56594, 56608 - 56646 not prescaled, trigger change at 3.6 GeV

3 56601 - 56604, 56648 - 56660 prescaled

4 56665 - 56667 prescaled

5 56605, 56607, 56647 prescaled

6 56668 - 56670 prescaled

7 56897 and later prescaled

8 57094 and later prescaled

9 56585, 56619, 56637 single-sector, not prescaled

10 56663 and later single-sector, not prescaled

3.2 Reaction Channels and General Event Selection

The channel of interest in this analysis is γp→ p π+π− (π0). The π0 could be identified through

the missing-mass technique. For this method, the Lorentz vectors of the incoming beam and the

target were used. The four-momentum of a missing particle in the reaction was then determined

from the measured three-momenta and the particle energies. The missing four-momentum was

given by:

xµ = kµ + Pµ −
2,3∑
i=1

pµi , (3.1)

where kµ and Pµ are the initial photon and target-proton four-momenta and pµi are the four-

momenta of the two or three detected final-state particles. The missing mass mX was defined

as:

m2
X = xµxµ . (3.2)

The missing-mass distribution was used for a data quality check after all corrections and cuts had

been applied. The four-momentum vector xµ in Equation 3.1 was used to complete the set of

four-vectors for all particles.

Events were pre-selected based on the particles’ identification number (PID), which was deter-

mined during the cooking process. Events that did not meet our requirement (exactly one proton,
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one π+ and one π− in the final states) were ignored and subsequently omitted from the analysis.

The calculation of the detected particles’ masses, which was necessary to determine the PIDs, used

two independently-measured quantities, the momentum, p, and the velocity as a fraction of the

speed of light, β. The magnitude of a particle’s momentum was determined with an uncertainty of

< 1 % using information from the CLAS Drift Chambers (DC) [48]. The quantity β of a detected

final-state particle was determined with an uncertainty of up to 5 % [49] using a combination of the

Start Counter (SC), the Time-of-Flight (TOF) spectrometer, and the particle’s trajectory through

CLAS. The detected particle’s mass could then be calculated by:

m2
particle X =

p2 (1 − β2)

β2
. (3.3)

After the particle’s mass had been calculated, it was compared to the masses of known particles

(hadrons and leptons). If this calculated mass matched that of a known particle (within resolution),

the PID associated with that mass was assigned to the final-state particle. This value could then

be used to select certain final-states for analysis. In this analysis, the physical properties of the

final-state particles (e.g. their 4-vectors, vertex information, etc.) were extracted from the PART

data banks. Photon and final-state particle selection was further improved by applying cuts and

corrections (see Section 3.3). We also used kinematic fitting (see Section 3.5) to fine-tune the initial-

and final-state momenta by imposing energy- and momentum conservation. Finally, to separate

signal events from the remaining background, we used an event-based Q-factor method which is

discussed in more details in Section 3.12.

In a short summary, listed below are the cuts and corrections that were applied to the data:

1. Tagger-sag corrections (done in the cooking process).

2. ELoss corrections using the standard CLAS package [51].

3. Beam-energy corrections based on the CLAS-approved run-group approach [46].

4. Momentum corrections based on the CLAS-approved run-group approach [46].

5. Vertex cut: −110.0 < z-vertex < −70.0 cm.

6. Photon selection & accidentals

(nGammaRF() = 1 & tagr id equal for all tracks; information from TAGR bank)

51



7. Particle ID cut 2, ∆β = |β c − βm| ≤ 3σ, and timing cut, |∆tTBID| < 1 ns 3. The theoretical

β values for all particle types, βc, were calculated from the measured momentum and the

PDG mass m for the particle

βc =

√
p2

m2 + p2
. (3.4)

βm is the measured β value that is obtained from the Drift Chambers (DC), Start Counter

(SC), and the Time-of-Flight (TOF) spectrometer.

8. Confidence-level cut of CL > 0.001 for γp→ p π+π− (π0).

9. Fiducial cuts: nominal scenario [46]. This nominal-fiducial cuts will be described in section 3.9

The order of these applied cuts and corrections was quite flexible with the exception of a few

cases. Momentum corrections were applied after the energy-loss corrections. The following sections

describe the applied cuts and corrections in more detail.

3.3 Photon and Particle Identification

3.3.1 Initial-Photon Selection

The electrons, which were used to produce the beam of polarized photons via bremsstrahlung

radiation, were delivered from the accelerator into Hall B in the form of 2-ns bunches. Since each

bunch contained many electrons, there were several potential photon candidates per recorded event

that could have triggered the reaction inside the target. Random electron hits could also occur

from various background sources (e.g. cosmic rays). These did not create bremsstrahlung photons

but the hits were registered in the tagger scintillators. It was important to determine the correct

photon in each event (out of about five candidates on average) because the corresponding photon

energy was key to understanding the initial state of the event. The analysis steps taken in the

photon selection were as follows:

1. The Start Counter time per track at the interaction point, ttrack, was given by:

ttrack = tST −
d

c βcalc
, (3.5)

where t ST was the time when the particle was detected by the Start Counter, d was the length

of the track from the interaction point to the Start Counter, and c βcalc was the calculated

velocity of the particle. These (track) times could be averaged to give an event time, tevent.
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Figure 3.1: Left: Example of a coincidence-time distribution, ∆tTGPB, for the inclusive
p π+π− final-state topology. The 2-ns bunching of the photon beam is clearly visible in the his-
togram. Right: Distribution of ∆tTBID = tevent − tγ for the selected photon (one entry per event)
after PID cuts. The event vertex time, tevent, was based on Equation 3.5. We only considered
events which had exactly one candidate photon in the same RF bucket per track; each identified
track had to be associated with the same photon.

The time at which a candidate photon arrived at the interaction point, tγ , was given by:

tγ = tcenter +
d ′

c
, (3.6)

where tcenter was the time at which the photon arrived at the center of the target and d ′ was

the distance between the center of the target and the event vertex along the beam-axis. We

did not consider the x- and y-coordinates of the event vertex because they were comparable

to the vertex resolution. In this analysis, the tγ values were obtained from TAGR[ ].tpho.

Both, tγ as well as tevent, describe the time of the γp interaction – based on initial- and final-

state particles, respectively. To find the correct initial photon, we looked at the corresponding

time differences. The coincidence time, ∆tTBID, was thus defined per photon as the difference

between the Tagger time and the Start Counter time at the interaction point, tevent − tγ .

Since each event had several candidate photons, several ∆tTBID values were available, which

could be obtained from information in the TBID bank. Figure 3.1 (left) shows an example

distribution of the coincidence time, ∆tTBID. The figure clearly shows the 2-ns bunching

2In the final analysis, we applied the ∆β ≤ 3σ cut on either the proton or the π+ (no cut on the π−).
3∆tTBID = stV time() − vtime() is the coincidence time between the vertex and the photon time.
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Figure 3.2: Distributions of ∆β = β c − βm for protons (left) as well as for the π+ (middle) and
for the π− (right) from the g12 experiment (full statistics used in our FSU analyses, Period 2 (see
Table 3.2)). The quantity β c was calculated based on the particle’s PDG mass [52]. Events in the
center peak were selected after applying a |β c − βm| ≤ 3σ cut. See text for more details.

of the photons that arrived at the target. In each event, the information on energy and

timing, tγ , was written to the event’s TAGR bank for all photons. The total number of

photon candidates per event was also available. The photon selection itself was performed

by the CLAS offline software in the cooking process. However, we applied a timing cut of

∆tTBID < 1 ns in this analysis.

2. Occasionally, events could have more than one candidate photon with |∆tTBID| < 1 ns. In

such cases, the photon selection could not be made based on their time information. The

fraction of these events was about 13 % in the g12 experiment. To prevent any ambiguity,

only events with exactly one photon candidate in the same RF bucket for all selected tracks

(nGammaRF() = 1) were considered in this analysis. In addition, we also ensured that

the selected photon was the same for all reconstructed tracks (tagr id equal for all tracks).

Figure 3.1 (right) shows an example of the coincidence-time distribution for the selected initial

photon (one entry per event) after PID cuts.

3.3.2 Proton and Pion Selection

The photon energy for each event was selected according to the procedure outlined in Sec-

tion 3.3.1. In the next step, the identification of the final-state particles, proton, π+, and π−, was

needed. As mentioned in Section 3.2, we initially used particle ID information from the PART bank

and selected those events which belonged to our channel of interest. For a more refined selection

of the particles, we used the information on the measured and calculated β values of each parti-

cle. The TBID bank contained the CLAS-measured momentum of a particle; a theoretical value,

β c, for that particle could then be calculated from this measured momentum and an assumed
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mass. The βc values for all possible particle types were compared to the CLAS-measured empirical

βm = v
c value. Particle identification then proceeded by choosing the calculated β c closest to the

measured βm. Figure 3.2 shows the differences, ∆β = β c − βm for the different final-state parti-

cles based on the full g12 statistics that we used in our FSU analyses, (Period 2, see Table 3.2).

Assuming a PDG mass m for the particle [52], ∆β was given by:

∆β = β c − βm =

√
p2

m2 + p2
− βm . (3.7)

The prominent peaks around ∆β = 0 shown in Figure 3.2 correspond to the particles of interest.

It can be seen in the figures that the ∆β distributions for the pions are slightly broader than for

the proton and long tails including a prominent enhancement on either side of the central peak

are visible. When the PART bank was created during the track reconstruction, electrons were not

separated from pions. The additional features in the ∆β distributions for the pions represent these

electrons which need to be filtered out. To identify the protons and pions, loose cuts on |β c − βm|

were applied. The cut values were determined by fitting the main peak around ∆β = 0 with a

Gaussian. Figure 3.3 shows the measured momentum, p, versus the measured βm for protons and

pions before (left) and after (right) applying the |β c − βm| < 3σ cut. The bands for the pions and

protons (lower band) are clearly visible.

Although the ∆β-PID cuts significantly help avoid misidentified tracks in the selected event

sample, we applied only a loose |∆β| < 3σ cut in our final event selection on either the proton

or the π+ (no cut on the π−). This allowed us to retain as many signal events as possible. The

remaining background caused by misidentified tracks did not cause structures under the signal in

the relevant mass distributions and was taken care of by our background-subtraction technique

(see Section 3.12). The loose cuts were also in line with an earlier CLAS analysis of the ω and

η photoproduction cross sections [25, 53, 54].

3.4 Vertex Cut

The g9a experiment had three kinds of targets: a butanol, carbon, and a polyethylene target.

The butanol target was 5 cm long and 3 cm in diameter with its center located at the center of

the CLAS. Since we did not use the data from the carbon and polyethylene target, a vertex cut of
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Figure 3.3: Left: The measured βm versus momentum on a logarithmic color scale. Note a thin
horizontal line close to one for electrons, and the broad stripes for pions (top) followed by protons
(bottom). Right: The measured βm versus momentum after applying the 3σ cut based on the
difference ∆β = β c − βm. Clean pion and proton bands are visible. These figures were made
using the full statistics used in our FSU analyses, (Period 2, see Table 3.2).

−3 < z vertex < 3 cm was applied to the data. Figure 3.4 shows the z-vertex distribution in the

g9a experiment for the three different targets.

In the g12 experiment, the liquid hydrogen target was not located at the center of CLAS but

moved 90 cm upstream to increase the angular resolution for heavier-meson photoproduction in the

forward direction. The target itself was 40 cm long and 2 cm in diameter. Therefore, a z-vertex

cut of −110 < z vertex < −70 cm was applied; the full z-vertex distribution is shown in Fig. 3.5.

3.5 Introduction to Kinematic Fitting

The 4-vectors of the final-state particles were determined in the cooking or reconstruction phase.

Kinematic fitting [55] slightly modified these raw 4-vectors by imposing energy-momentum conser-

vation on the event as a physical constraint. In a brief summary, all measured components of

the Lorentz 4-vectors (the magnitude of the momentum as well as the two angles used in the

drift-chamber reconstruction – p, λ, φ, respectively) in addition to the initial photon energy were

modified within their given uncertainties until the event satisfied energy-momentum conservation
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Figure 3.4: The z-vertex distribution in the g9a experiment based on 30% of the total statistics for
the full photon energy range [33]. The three peaks for the three different targets are clearly visible
as well as a peak from the exit window of the vacum chamber.
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Figure 3.5: The z-vertex distribution (axis along the beam line) of all reconstructed particles we
used in our FSU analyses. The shape of the liquid hydrogen target is clearly visible. The small
enhancement at about z = −63 cm originates from the exit window of the vaccuum chamber.

exactly. The determination of the correct uncertainties (or covariance matrix) was important in

this fitting procedure. The kinematically-fitted event had then several quantities which could be

used to inspect the quality of the kinematic fitting: a pull value for each measured quantity and
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an overall χ2 value. The latter could be converted to a confidence-level (CL) value to judge the

goodness-of-fit. The pull distributions were used to evaluate the initial uncertainty estimation

and to study systematics. It turned out that kinematic fitting provided an effective tool to verify

kinematic corrections, e. g. momentum corrections.

3.5.1 Confidence Level

To check the goodness-of-fit or the agreement between the fit hypothesis and the data, the fit

χ2 value was used. The corresponding CL value was defined as:

CL =

∫ ∞
χ2

f(z;n) dz , (3.8)

where f(z;n) was the χ2 probability density function with n degrees of freedom. It denoted the

probability distribution for certain external constraints, e. g. energy-momentum conservation or

also a missing-particle constraint. In the ideal case where all events satisfied the fit hypothesis and

the measured quantities were all independent and had only statistical uncertainties, the confidence-

level distribution would be flat from (0, 1]. However, the real data had a confidence-level distribution

which showed a peak near zero (Fig. 3.6, left side). This peak contained events which did not satisfy

the imposed constraints. These events could be hadronic background events, poorly-reconstructed

events with significant systematic uncertainties, or events with misidentified particles. A cut on

small CL values eliminated the majority of these background events while only a relatively small

amount of good data was lost.

3.5.2 Pulls

A pull value is a measure of how much and in what direction the kinematic fitter has to alter a

measured parameter – or to pull at it – in order to make the event fulfill the imposed constraint.

All three fit parameters for every detected final-state particle had pull distributions. The pull value

for the i th fit parameter was given by:

zi =
εi

σ(εi)
, (3.9)

where εi = ηi − yi was the difference between the fitted value, ηi, and the measured value, yi. The

quantity σ represents the standard deviation of the parameter εi. Therefore, the i th pull can be

written as:

zi =
ηi − yi√

σ2(ηi)− σ2(yi)
. (3.10)
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Figure 3.6: Example of results from kinematic fitting [7]. Energy and momentum conservation was
imposed on Topology 4 in γp → p π+π−. Left: A confidence-level distribution. It peaks toward
zero but flattens out toward one. Right: Pull distribution of the incoming photon energy. Ideally,
such a distribution is Gaussian in shape, centered at the origin (µ = 0) with a width of one (σ = 1).

Daniel Lersch from Juliech Research Center used the reaction γp → p π+π− to fine tune the

covariance matrix or the error of the measurements. Since the reconstruction of each particle was

based on three parameters, this exclusive channel had ten pull distributions including a pull for

the initial photon energy. In the ideal case that the error matrix of these parameters was correctly

determined and all remaining systematic uncertainties were negligible, the pull distributions would

be Gaussian in shape with a width of one (σ = 1) and centered at zero (µ = 0); such an example is

shown in Figure 3.6 (right side). A systematic problem with the data in the quantity ηi would be

observed as an overall shift away from zero. Similarly, if the uncertainties of ηi were consistently

(overestimated) underestimated, then the corresponding pull distribution would be too (narrow)

broad, and the slope of the CL distribution toward CL = 1 would be (positive) negative. The

uncertainties of the measured parameters could be corrected from the pull distributions in an

iterative procedure.

In our analysis, kinematic fitting served as an effective tool to double-check the final-state

corrections approved in Ref. [46]. We also used the reaction γp → p π+π− for this purpose. The

pull and confidence level distributions for the g12 and g9a data are presented in Fig. 3.7, 3.8,

and 3.9.
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Figure 3.7: The g12 pull and CL distributions for the exclusive reaction γp→ p π+π− (full statistics
of Period 2).

3.6 Kinematic Corrections

The following subsections briefly summarize some of the standard CLAS corrections. We only

give a brief description here (in the order of application) without showing the actual effect on the

data. The latter was discussed in Ref. [46] and was approved by the CLAS collaboration.

3.6.1 Tagger-Sag Correction

The energy of the incoming photons was determined by the Hall-B tagging system. It was

observed in previous experiments that a physical sagging of the holding structure supporting the
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Figure 3.8: The g12 pull and CL distributions for the reaction γp → p π+π− (π0) (full statistics
of Period 2). Note that the pull distributions are not Gaussian over the full range owing to the
missing-particle hypothesis. The confidence-level distribution looks nicely flat, though.

E-counter scintillator bars could be attributed to gravitational forces [56]. The consequence of this

time-dependent sagging was a misalignment of the scintillator bars which led to a small shift of

the scattered electron’s energy [57]. In the g9a and g12 experiment, the tagger sag was taken into

account and corrected in the offline reconstruction code. No further photon energy correction was

applied.
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Figure 3.9: Example of g9a pull and confidence level distributions from runs 55630-55678 of the
butanol target [36]. The green line was made from the raw data without applying any corrections.
The red lines was obtained after the Eloss package was applied. Finally, the red lines were obtained
by applying the momentum correction. The black lines represent Gaussian fit to the data.

3.6.2 Enery-Loss (ELoss) Correction

As charged particles traveled from the production vertex to the active components of the CLAS

spectrometer, they lost energy through inelastic scattering, atomic excitation or ionization when

interacting with the target, target walls, support structures, beam pipe, Start Counter, and the

air gap between the Start Counter and the Region 1 Drift Chambers. Therefore, the momentum

reconstructed from the drift chambers was smaller than the momentum of the particle at the
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production vertex. To account and correct for this, the 4-vectors of the final-state particles were

modified event-by-event using the “ELoss” package, which was developed for charged particles

moving through CLAS [51]. This ELoss package determined the lost momentum of each particle in

the materials it had interacted with. In this procedure, the particle’s 4-momentum – as measured

by the Region 1 Drift Chambers – was used to track the particle back to the reaction vertex in

the target cell. The energy loss was then calculated based on the distance and the materials it

traversed. The corresponding 4-vector was corrected by multiplying an ELoss correction factor to

the magnitude of the momentum:

P particle (ELoss) = η particle · P particle (CLAS) (3.11)

where Px (ELoss) is the momentum of the particle x after applying the energy-loss correction,

Px (CLAS) is the raw momentum measured in CLAS and x is either the proton, π+, or π−. The

parameters η p, ηπ+ , and ηπ− are the ELoss correction factors which modified the momentum by a

few MeV, on average.

3.6.3 Momentum Corrections

The CLAS-g12 experimental setup was not absolutely perfect. For this reason, corrections of

a few MeV had to be determined and applied to the final-state particles’ momenta to account

for unknown variations in the CLAS magnetic field (Torus Magnet) as well as inefficiencies and

misalignments of the drift chambers. As a matter of fact, the momenta of the tracks as measured

by the drift chambers exhibited a systematic shift within each sector as a function of the azimuthal

angle φ of one of the tracks [46]. In our analyses, we have followed the CLAS-approved procedure

outlined in Ref. [46].

The initial momentum corrections for the proton and the π+ were determined by the group at

Arizona State University (ASU) based on the single-track reactions γp → pX and γp → π+X,

respectively. The proton and π+ momenta were then corrected such that the X-peak position did

not show any φ-angle dependence. These corrections were then verified with the kinematic fitter by

observing the quality of the pull distributions before and after applying the momentum corrections.

All data sets were then fine-tuned and momentum corrections were also determined for the π−. In

a first step, we studied the momentum distributions of each final state particle and binned the data

in five momentum ranges. In a second step, the kinematic fitting for the reaction γp→ p π+π− was
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performed and the pull distributions for different momentum bins were evaluated. The fine-tuning

goal was to obtain pull fistributions which were Gaussiang in shape with a mean value = 0.

Some example distributions showing the effect of the momentum corrections on removing the

φ-angle dependence are shown in Figure 3.10 and 3.11. Figure 3.10 shows the missing-mass (the

π− in the reaction γp→ pπ+X) dependence on the φ angle for FROST data before and after the

corrections.

Figure 3.10: Azimuthal dependence of the missing mass X in the reaction γp → pπ+X before
(left) and after (right) the momentum corrections. The data shown are from the g9b data set for
1.3 < Eγ < 1.4 GeV [35].

The ”transverse momentum balance” plots shown in figure 3.11 describe an example of the

effect of momentum corrections for π+ from the g12 data. The transfer momentum balance for a

given particle is defined as the sum of the momentum of other particles projected onto the line that

is perpendicular to the beam having the same φ angle as the given particle minus its momentum

transverse to the beam.

3.6.4 Bad or Malfunctioning Time-of-Flight Paddles

Some TOF paddles of the CLAS spectrometer were dead or malfunctioning during the g9a

and g12 experiments. The timing resolution of each paddle was investigated on a run-by-run basis

to determine the stability throughout the experiment. Reference [46] contains the results of an

extensive study on bad TOF paddles in CLAS-g12. The list of identified bad paddles recommended
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Figure 3.11: The transverse momentum balance of exclusive pπ+π− g12 events as a function of
azimuthal angle φ before (left) and after (right) momentum corrections for π+ track [46].

to knock out was taken directly from Table 19 of Ref. [46] and is also given in Table 3.3 for

convenience.

Table 3.3: The list of bad time-of-flight paddles recommended to knock out [46].

Sector Number Bad TOF Paddles in CLAS-g12

1 6, 25, 26, 35, 40, 41, 50, 56

2 2, 8, 18, 25, 27, 34, 35, 41, 44, 50, 54, 56

3 1, 11, 18, 32, 35, 40, 41, 56

4 8, 19, 41, 48

5 48

6 1, 5, 24, 33, 56

However, in this analysis we did not remove the bad paddles for the g9a data because the final

observables were extracted from the g9a data by performing asymmetries in which the effect of the

bad paddles canceled out in the ratios.
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3.7 Monte Carlo Simulations for the g12 Experiment

To extract the differential cross sections for the reactions (1) γp → pω, and (2) γp → K0 Σ+

from the g12 data, we needed to apply detector-acceptance corrections, where the latter accounted

for the probability that an event of certain kinematics would be detected and recorded (also called

efficiency corrections). This efficiency corrections were not required in the extraction of polarization

observables from g9a data since the detector acceptance effects canceled out in the ratios when the

asymmetries were performed.

The performance of the detector was simulated in GEANT3 - based Monte-Carlo studies. We

followed the steps outlined in Ref. [46] for generating events, digitization and smearing, as well as

reconstruction.

The generated raw events were processed by gsim to simulate the detector acceptance for each

propagated track from the event vertex through the GEANT3-modeled CLAS detector. The CLAS

smearing package known as gpp then processed the output to reflect the resolution of the detector.

Finally, the a1c package was used to perform the cooking. We generated a total of 175 million

γp → pω → p π+π−π0 phase-space events for the whole range of incident-photon energies, i.e.

1.1 < Eγ < 5.4 GeV. We have also generated 11 million γp → p η → p π+π−π0 and 40 million

γp→ K0 Σ+ → p π+π−π0 Monte Carlo events. To guarantee phase-space (generated) events which

are flat in cos θmeson
c.m. , we chose a t-slope of zero.

In this section, we show the quality of the simulated events by comparing various data distri-

butions with Monte Carlo events:

1. In the CLAS-g12 experiment, the 40-cm-long liquid-hydrogen target was pulled upstream by

90 cm from the center of the CLAS detector. Figure 3.12 compares the z-vertex distribution

for data and Monte Carlo events after applying our cut of −110 < z vertex < −70 cm:

γp → pω (left) and γp → KS Σ+ (right). This figure shows that the vertex distribution is

very well modeled.

2. Figure 3.13 and 3.14 shows the distributions of φ (azimuthal angle) and θ (polar angle) for the

proton (top) and for the π+ (bottom). The data and Monte Carlo distributions match well

for the azimuthal angles of the proton and the π+ as well as for the polar angle of the pion.

However, the MC polar angle of the proton, θp, does not agree very well with the data. This

is reasonable because our Monte Carlo events do not contain any reaction dynamics (simple

generation of phase space events), but the distribution covers the same polar-angle range.
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3. We also checked all the signal distributions (peaks for ω, η, and KS) to see if our Monte

Carlo mass resolution matches the real detector resolution. Figure 3.15 shows invariant-mass

distributions for both data (black line) and Monte Carlo (red line) events. Since the mass

resolution is slightly energy dependent, we compare data and Monte Carlo for Eγ < 3 GeV

(left) and Eγ > 3 GeV (right). It is observed in this figure that the MC resolution is in

reasonable agreement with the actual detector resolution.

Table 3.4: The detector resolutions for various channels for both data and Monte Carlo simulations.

Resolution (Gaussian σ in [ MeV ])

Reaction Low Energy High Energy

Data MC Data MC

γp→ pω 7.68 7.98 12.0 12.0

γp→ p η 6.5 6.9 7.2 7.1

KS Peak Σ Peak
γp→ KS Σ+

5.4 4.4 6.5 6.2

4. Figure 3.16 shows the distributions for the cos θ π
−

c.m. versus z vertex for γp → pω data and
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Figure 3.12: Left: The z-vertex distribution of γp → pω events. The black line denotes the data,
the read line denotes the Monte Carlo distribution; good agreement is observed. These figures
were made using the full data statistics of 4.4 million events and an equal amount of Monte Carlo
events after applying our z-vertex cut of −110 < z < −70 cm. Right: The z-vertex distribution of
γp→ KS Σ+ events.
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Figure 3.13: The azimuthal (φ) angle distributions of the proton (top row) and of the π+ (bottom
row) in the reaction γp→ pω for data (black line) and Monte Carlo events (red line). These figures
were made using the full data statistics of 4.4 million events and the same number of Monte Carlo
events. The φπ+ and φp distributions are in very good agreement.

Monte Carlo events; the distributions are almost identical. In the very backward region of

the target, an angle range of only about −0.6 < cos θπ
−
c.m. < 0.8 is covered, whereas −0.8 <

cos θπ
−
c.m. < 0.8 is covered in the very forward region.
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Figure 3.14: The polar (θ) angle distributions of the proton (top row) and of the π+ (bottom row)
in the reaction γp → pω for data (black line) and Monte Carlo events (red line). These figures
were made using the full data statistics of 4.4 million events and the same number of Monte Carlo
events. The θπ+ distributions are in very good agreement.

5. The quality of the kinematic fitting for the Monte Carlo events is shown in the pull and

confidence-level (CL) distributions for the reaction γp → pπ+π− (Fig. 3.18) and for the

reaction γp → pω → pπ+π−π0 (Fig. 3.19). A summary of the mean and σ values is given
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Table 3.5: Final mean (x̄) and σ values of Gaussian fits to our g12 pull distributions after applying
all corrections. Note that the values for p π+π− (π0) are based on distributions which cannot be
perfect Gaussians owing to the missing-particle hypothesis.

proton π+ π− γ

mom. λ φ mom. λ φ mom. λ φ E

Monte Carlo: γp→ p π+π−

x̄ 0.023 0.003 0.042 0.053 −0.002 0.041 0.053 0.004 0.040 −0.056

σ 1.117 1.045 1.010 1.017 1.028 0.997 1.018 1.048 0.994 1.102

Monte Carlo: γp→ p π+π− (π0)

x̄ 0.040 0.018 0.024 0.027 0.000 0.024 0.022 0.004 0.030 −0.052

σ 1.078 1.054 1.081 1.045 1.056 1.015 1.055 1.056 1.004 1.086

in Table 3.5. Recall that each of these distributions should have a mean of zero and width

of one. The agreement of the extracted values with these ideal values is very good. The CL

distributions are flat toward one.

To further check the quality of the confidence levels in all kinematic regions, we considered

the normalized slope of the distribution:

ā =
a

a/2 + b
, (3.12)

where a is the slope and b is the intercept obtained by fitting the confidence-level distribution

to a linear function. Figure 3.17 shows examples of confidence-level distributions and their

respective normalized slopes. If the errors are overestimated (underestimated), then the

confidence-level distribution will have a positive (negative) slope. In line with the procedure

outlined in Ref. [54], we would consider the covariance matrix to be acceptable if all kinematic

regions yielded normalized slopes in the range [−0.5, 0.5]. Figure 3.20 shows the normalized

slopes extracted in (p, cos θ) bins for the proton and the π−. Notice that all kinematic regions

(excluding edge bins with low statistics) have |ā| < 0.5. Thus, we conclude that the covariance

matrix is acceptable.
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Figure 3.15: Invariant mass (signal) distributions for data (black line) and Monte Carlo (red line).
The left distributions are for Eγ < 3.0 GeV, the right distibutions are for Eγ > 3.0 GeV. Top
row: The Mπ+π−π0 distribution showing the ω meson. Middle row: The Mπ+π−π0 distribution
showing the η meson. Bottom row: The Mπ+π− distribution showing the KS signal (left) and
the Mpπ0 distribution showing the Σ signal (right). The overall agreement between the data and
Monte Carlo distributions indicates that the GEANT simulations model the resolution of the actual
detector reasonably well.
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Figure 3.16: The z-vertex vs. cos θπ
−
c.m. distributions using a logarithmic color scale for data (left)

and Monte Carlo events (right); the distributions are very similar. In the very backward region
of the target, an angle range of only about −0.6 < cos θπ

−
c.m. < 0.8 is covered, whereas −0.8 <

cos θπ
−
c.m. < 0.8 is covered in the very forward region.
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Figure 3.17: Examples of normalized slopes from confidence-level distributions for the proton (left)
and for the π− (right): Normalized slopes have been extracted by fitting the distributions in the
range (0.5, 1) to a linear function.
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Figure 3.18: Monte Carlo (reaction: γp → p π+π−) pull and confidence-level distributions for the
four-constraint fit to p π+π− (check for energy and momentum conservation, no mass constraint)
along with the mean and σ values of the fits. A summary of the mean and σ values of these fits
(for data and Monte Carlo) can also be found in Table 3.5.
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Figure 3.19: Monte Carlo (reaction: γp→ pω → p π+π−π0) pull and confidence-level distributions
for the one-constraint fit to p π+π− (π0) (no ω-mass constraint) along with the mean and σ values
of the fits. Note that the pull distributions are not Gaussian over the full range owing to the
missing-particle hypothesis. A summary of the mean and values of these fits (for data and Monte
Carlo) can also be found in Table 3.5.
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Figure 3.20: Confidence-level checks. Normalized confidence-level slopes presented in cos θ versus
p [GeV/c] distributions for the proton (top row) and for the π− (bottom row). The results for the
g12-data are shown on the left and for Monte Carlo on the right. Notice that - excluding edge bins
with low statistics - all kinematic regions have |ā| < 0.5.
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3.7.1 Trigger Simulation

To simulate the trigger conditions for our g12 data, we used the same technique that was

developed for the measurement of the ω and η cross sections in the CLAS-g11a experiment [25, 53].

The procedure is outlined in Ref. [58]. This technique used the trigger word or trigger bit, which

was written into the BOS data during the cooking. The trigger conditions for the data that we

used are described in section 2.1. In summary, the recorded events had:

1. Either three charged time-of-flight hits in three different sectors (three-sector events),

2. Or two hits in different sectors (two-sector events), in combination with at least one photon

in the beam bucket whose energy was above 3.6 GeV. The term “beam bucket” refers to all

photons that were detected during the life time of the trigger (detector).

Therefore, to simulate the trigger conditions in the Monte Carlo events, two pieces of information

were needed:

1. The efficiency of the trigger as a function of particle type, momentum, and detector position

(trigger efficiency map).

2. The probability for having at least one photon with Eγ > 3.6 GeV (two-sector events).

(1) The trigger efficiency map was derived using γp → p π+π− events and required all three

tracks to be detected in three different sectors. If the trigger were 100 % efficient, then all three

detected particles would also be recorded in the trigger word, i.e. contributed to the trigger de-

cision. However, if the trigger were not 100 %, an event with three charged tracks would still be

reconstructed, although one of the tracks would not fire the trigger (and be recorded in the trigger

word). Therefore, it was possible to build a map of the trigger efficiency for each particle type as

a function of sector, time-of-flight paddle, and azimuthal angle. The trigger efficiency map for the

π−, π+, and the proton are shown in Fig. 3.23, 3.24, and 3.25.

(2) The probability for two-sector events of having at least one photon with Eγ > 3.6 GeV in

the beam bucket could be determined by comparing energy-dependent intensity distributions of

two-sector and three-sector events. These distributions are shown in Fig. 3.21. A discontinuity at

about 3.6 GeV is clearly observed in the left distribution (two-sector events) due to the additional

photon-energy requirement. Further structures can be seen around 3 GeV and 4.4 GeV owing to
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broken tagger scintillators. On the other hand, the right figure shows a smooth distribution for

three-sector events because events were recorded independent of their photon energy.

Figure 3.22 shows the ratio of two-sector events and three-sector events. Since the physics for using

an unpolarized beam is independent of the azimuthal angle, we expect the ratio to be flat. And

we clearly see two flat distributions that disconnect at about 3.6 GeV. By fitting the two plateaus

using a zeroth-order polynomial below and above 3.6 GeV, we concluded that the probability for

two-sector events of having at least one photon with an energy above 3.6 GeV is about 0.51.

After building the efficiency map and determining the probability for having at least one photon

with an energy above 3.6 GeV for two-sector events, we simulated the Monte Carlo events using

the following steps:

1. The efficiency map was based on events that had all three particles in different sectors.

Therefore, we cut out events if two particles ended up in the same sector (for both data and

MC events).

2. For each event, we generated three random numbers between 0 and 1 for the three final-state

particles, denoted by R p, R π+ , and R π− .
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Figure 3.21: The distribution of events as a function of beam energy. The left figure shows the
distribution for two-sector events. It clearly shows a discontinuity at 3.6 GeV. The right figure shows
the distribution for three-sector events. The distribution is smooth since there is no additional
photon-energy requirement.
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(a) Denoting the trigger efficiency for each particle P p, P π+ , and Pπ− , then the particles

were considered to fire the trigger if the generated random number were smaller than

the efficiencies. For example, we considered the proton to fire the trigger if Rp < Pp.

(b) If all particles fired the trigger, we kept the Monte Carlo event no matter what the

photon energy was.

(c) If only two particles fired the trigger and the photon energy was above 3.6 GeV, we kept

the event.

(d) If only two particles fired the trigger and the photon energy was below 3.6 GeV, then we

generated another random number, R tagger . If R tagger < 0.51, then we kept the event.

Otherwise, if If R tagger > 0.51, the Monte Carlo event was discarded.

3. If no particle or only one particle fired the trigger, then the Monte Carlo event was discarded.
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Figure 3.22: The ratio of two-sector and three-sector events. The discontinuity at 3.6 GeV is an
effect of the trigger condition. The ratios are flat as expected because the physics of using an
unpolarized beam must be independent of the azimuthal angle. By fitting these ratio distributions
below and above 3.6 GeV, we studied the probability for tow-sector events of having at least one
photon in the beam bucket with Eγ > 3.6 GeV. This probability was determined to be 0.51.
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Figure 3.23: Trigger efficiency map for the π− as a function of sector, tof-paddle number, and
azimuthal angle.
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Figure 3.24: Trigger efficiency map for the π+ as a function of sector, tof-paddle number, and
azimuthal angle.
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Figure 3.25: Trigger efficiency map for the proton as a function of sector, tof-paddle number, and
azimuthal angle.
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Figure 3.26: Left: The cos θ π
0

c.m. distribution of all 18 million γp→ p π+π− (π0) events from the g12
data which passed a p > 0.001 CL cut. This figure shows an excess of events in the very forward
region. Right: The same figure zoomed in on the forward region.

3.8 The Angular Distribution of the Undetected π0

The channel γp→ p π+π− has a significantly larger cross section than γp→ p π+π− (π0). This

fact, coupled with the relatively small difference in the missing masses of the two channels, makes

p π+π− leakage into the p π+π− (π0) sample a cause for concern. In this section, we consider the

possibility of p π+π− leakage resulting from selecting the wrong photon.

If the incorrect photon has a higher energy than the correct one, the extra energy will create

a fake π0 that will move along the beam direction. Consider a γp → p π+π− event that was

produced in the detector. Our analysis procedure will attempt to reconstruct a π0 from the missing

momentum, ~pmiss. Since the event produced was actually a p π+π− event, the missing transverse

momentum measured should be approximately zero, regardless of whether the correct photon has

been found. Thus, the momentum vector of the reconstructed π0 must point (approximately) along

the beam direction: ~pmiss ≈ ±|~pmiss| ẑ.

Therefore, we expect any leakage from the γp → p π+π− channel, due to an incorrect photon

selection, to result in an excess of events in the very forward direction with cos θ π
0

c.m. ≈ +1. Fig-

ure 3.26 clearly shows a pronounced excess of events in the very forward direction. Therefore, we

cut out all events with cos θ π
0

c.m. > 0.99.
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3.9 Fiducial Volume Cuts

Geometric fiducial volume cuts have been applied according to the nominal scenario outlined

in Section 5.3 of the analysis note [46]. These volumes were regions of the detector that were not

well modeled and needed to be removed from the analysis. For example, the magnetic field varied

rapidly close to the torus coils making these regions difficult to simulate. Thus, any particle whose

trajectory was near a torus coil was identified and subsequently, the event was excluded from our

analysis. The effect of this particular cut was most dramatic in the forward region, where the coils

occupied a larger amount of the solid angle.

In a brief summary, such regions for all the g12 data, where the detector acceptance was well

behaved and reliably reproduced in simulations, were expressed as an upper and lower limit of the

difference in azimuthal angle between the center of a given sector and a particle track. Because

of the hyperbolic geometry of CLAS and the presence of the toroidal magnetic field, the fiducial

boundaries on φ were functions of momentum p, charge, and polar angle θ of each track. The

boundaries were evaluated separately in each sector, nominally defined as the φ values in which

occupancy drops below 50 % of that in the respective sector’s flat region. The flat regions were

defined as -10◦ < φ < 10◦. The nominal upper and lower φ limits depended strongly on particle

charge, p and θ, hence the need for functional characterization and extrapolation.

In order to determine the fiducial limits for charged hadrons, a sample of exclusive p π+π− events

was sliced into 5× 15× 6 bins in p, θ, and sector, respectively. The φ distributions for π+ and π−

were then plotted separately in each bin. The upper and lower φ limits of these first-generation

plots were found according to the nominal fiducial definition of 50 % occupancy. The results from

the first-generation fits were represented in second-generation plots of φmin and φmax vs. θ and

fit with hyperbolas, chosen since they replicate the projection of the detector. In a last step, the

second-generation fitting parameters were plotted vs. p in third-generation plots. These third-

generation plots were fit to power functions and the fit results defined the sought-after functional

form φmin(θ, p) and φmax(θ, p) for each sector. The sector-integrated results for positive and negative

hadron tracks compose the nominal fiducial region.

The fiducial volume cuts were not applied in the g9a data since the effect canceled out in the

ratios of the asymmetries.
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3.10 Event Statistics after Applying all Cuts and Corrections

The process of developing and applying energy, momentum and other necessary corrections

during the course of this analysis served the purpose of correcting for the effects of the experimental

setup, therefore resulting in a data set that was as nature intended it. Additionally, determining

and enforcing cuts used in the analysis served not only to remove the remaining instrumental

effects of the experimental setup but also to remove the contributions from physics events not of

interest to the analysis (the hadronic or electromagnetic background). Through the application of

the proper vertex position, photon and particle identification variables, this background could be

reduced considerably. Table 3.6 shows how many events survived after applying various cuts.

Table 3.6: The table shows the remaining statistics after various cuts. Note that Topology 4 implies
kinematic fitting imposing no missing particle as well as energy and momentum conservation.

Final# of events

g9a g12

γp→ pω γp→ K0 Σ γp→ pω γp→ K0 Σ

62300 873 4.2 M 22890

3.11 Beam and Target Polarization

3.11.1 Circularly-Polarized Photon Beam - Degree of Polarization

The g9a and g12 experiments used circularly-polarized photons that were produced via bremsstrahlung

of longitudinally-polarized electrons from an amorphous radiator. The degree of circular polariza-

tion of these bremsstrahlung photons, δ�, could be calculated from the longitudinal polarization

of the electron beam, δ e− , multiplied by a numerical factor. Using x = Eγ/Ee− , the degree of

polarization was given by the Maximon-Olson formula [59]:

δ�(x) = δ e− ·
4x− x2

4− 4x+ 3x2
. (3.13)

Figure 3.27 shows that the degree of circular polarization is roughly proportional to the photon-

beam energy. In the g12 experiment, the electron beam (CEBAF) energy was 5.715 GeV for all the
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runs that we used in this analysis, while the CEBAF-energies of 1.645 GeV and 2.478 GeV were

used in the g9a experiment.

The polarization of the electron beam was measured regularly using the Møller polarimeter,

which makes use of the helicity-dependent nature of Møller scattering. Table 3.7 summarizes the

Møller measurements of the electron-beam polarization in the g12 experiment, δ e− . Note that only

the measurement for the second run range (56476 - 56643) was used here. During the g12 experi-

ment, Hall B did not have priority and as a result, the polarization of the beam was delivered as a

byproduct (based on the requirements of the other halls). Although the polarization fluctuated, the

majority of the g12 runs had a beam polarization close to 70 % with a total uncertainty estimated

to be 5 %.

For the g9a experiment, average values of 84.80 % and 83.02 % were used for the electron-beam

polarization as shown in table ??.
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Figure 3.27: Left: Degree of circular-photon polarization as a function of incident-photon energy for
the g9a experiment with the CEBAF-energies of 1.645 GeV and 2.478 GeV [33]; the electron-beam
polarization for each period is listed in table ??. Right: Degree of circular-photon polarization as
a function of incident-photon energy for the g12 CEBAF-energy of 5.715 GeV; the electron-beam
polarization was 67.17 %.
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Table 3.7: Møller measurements of the electron-beam polarization for the g12 experiment. Only
the measurement for the run range 56476 - 56643 was used in our analysis.

Run Range Electron-Beam Polarization δe− (Møller Readout)

56355 - 56475 (81.221± 1.48) %

56476 - 56643 (67.166± 1.21) %

56644 - 56732 (59.294± 1.47) %

56733 - 56743 (62.071± 1.46) %

56744 - 56849 (62.780± 1.25) %

56850 - 56929 (46.490± 1.47) %

56930 - 57028 (45.450± 1.45) %

57029 - 57177 (68.741± 1.38) %

57178 - 57249 (70.504± 1.46) %

57250 - 57282 (75.691± 1.46) %

57283 - 57316 (68.535± 1.44) %

The degree of circular polarization was not a continuous function of the center-of-mass energy.

Therefore, we used the following equation to determine the polarization for center-of-mass bins:

δ̄� =
1

N+ +N−

∑
i∈∆τ

δ� (W ) , (3.14)

where N± was the total number of γp → pω and γp → K0Σ+ events (used for the observable E)

for the two helicity states and W was the center-of-mass energy; δ� (W ) was calculated from

Equation 3.13. Average values were derived for each center-of-mass bin and are shown in table 3.9

for the g9a experiment and table 3.10 for the g12 experiment.

3.11.2 Circularly-Polarized Photon Beam - Orientation of the Helicity States

The direction of the beam polarization depended on the condition of the half-wave plate (HWP)

which was either IN or OUT. In CLAS-g12, the longitudinal polarization of the electron beam was

flipped pseudo-randomly at a high rate with many sequences of helicity (+ ,−) or (− , +) signal per

second. Occasionally, the HWP was inserted in the circularly-polarized laser beam of the electron

gun to reverse helicities and thus, the beam polarization phase was changed by 180◦. The HWP

was inserted and removed at semi-regular intervals throughout the experimental run to ensure that

no polarity-dependent bias was manifested in the measured asymmetries.
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For the g9a and most of the g12 runs, the information could be retrieved from the “level1-

trigger latch word” of the TGBI bank. Bit 16 in this word described the photon helicity-state

corresponding to the sign of the electron-beam polarization as shown in Table 3.11. Alternatively,

the g12 run-group provided the following method:

int GetHelicity(clasHEVT_t *HEVT)

{

int helicity = 0;

int readout = HEVT->hevt[0].trgprs;

if(readout > 0) helicity = 1;

if(readout < 0) helicity = -1;

return helicity;

}

When the HWP was OUT, a bit-16 value of “one” meant that the beam polarization was parallel

to the beam direction and a value of “zero” that the beam polarization was antiparallel to the

beam. When the HWP was IN, the directions of the beam polarization were switched. Table 3.12

and table 3.13 show the HWP settings in the g9a and g12 data sets. The information shown in

these table were experimentally confirmed by studying the beam asymmetries I� in the two-pion

channel.

Table 3.8: Møller measurement of the electron-beam polarization for the g9a experiment.
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Table 3.9: The average degrees of circular polarization for g9a W bins

3.11.3 Beam-Charge Asymmetry in Data Sets with Circularly-Polarized
Photons

The electron-beam polarization was toggled between the helicity-plus (h+) and the helicity-

minus (h−) state at a rate of about 30 Hz. At this large rate, the photon-beam flux for both

helicity states should be the same, on average. However, small beam-charge asymmetries of the

electron beam could cause instrumental asymmetries in the observed hadronic asymmetries and

had to be considered. The beam-charge asymmetry could be calculated from the luminosities of

h+ and h− events:

Γ± = α± Γ =
1

2
(1 ± āc) Γ , (3.15)
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Table 3.10: The average degrees of circular polarization for g12 W bins

where Γ was the total luminosity and the parameters α± denoted the fraction of h+ and h− events.

The parameters α± depended on the mean value of the electron-beam charge asymmetry, āc, which

was studied in other CLAS experiments and typically less than 0.2 %, e.g. Ref. [60, 61]. Since the

beam-charge asymmetry was very small, it could be considered negligible.
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Table 3.11: Helicity signal from the TGBI bank for the two half-wave-plate positions. In the
table, the sign + (−) denotes the beam polarization was parallel (anti-parallel) to the beam di-
rection. However, this information is not crucial for our analysis since we also double-checked the
polarization in different ways.

TGBI latch1 Beam Helicity

Bit 16 λ/2 (OUT) λ/2 (IN)

1 + −
0 − +

Table 3.12: The HWP condition in each period of the g9a data sets

Table 3.13: The half-wave plate (HWP) condition in the g12 data sets. In our analysis, only
Period 2 was used.

Period Run Range HWP Condition

1 56519 and earlier

2 56520 - 56594, 56608 - 56646 IN

3 56601 - 56604, 56648 - 56660

4 56665 - 56667

5 56605, 56607, 56647

6 56668 - 56670

7 56897 and later

8 57094 and later
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Figure 3.28: Target polarization versus run number measured in the g9a experiment [36].

Table 3.14: Definition of the target polarization settings in g9a. The first sign denotes the direction
of the proton polarization relative to the magnetic field and the second sign denotes the direction
of the holding magnet relative to the beam.

3.11.4 Target Polarization in the g9a experiment

The FROST-g9a experiment utilized a longitudinally-polarized frozen-spin butanol target. The

target was polarized a total of 21 times during g9a runs, with an average starting polarization of

84 % in the positive spin state and −86 % in the negative. Typical relaxation times for the target

were about 2800 hours to 3600 hours for positive polarization and about 1400 hours to 1900 hours

for negative polarization. The target was re-polarized and the polarizarion also reversed about once

per week.

The direction of the target polarization was defined by two quantities: the direction of the
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proton polarization with respect to the holding field and the direction of the magnetic field with

respect to the beam. The target settings in g9a are summarized in table 3.14. In our g9a analysis,

the final directions of the target polarization were determined from the target asymmetry or Pz

in the reaction γp→ pπ+π−. Table 3.15 shows the results after our consistency studies using the

target asymmetry, Pz.

Table 3.15: The condition of the beam and target polarization for each g9a period used in our anal-
ysis.The arrows ⇒ (⇐) denote a target polarization parallel (anti-parallel) to the beam direction.
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3.12 Signal-Background Separation: Q-Factor Method

The remaining step in preparing a clean event sample of the reaction in question is the re-

moval of background underneath the signal peak. The (event-based) Q-factor method used for the

background separation in the p π+π− π0 final states (including γp → pω → p π+π−π0 as well as

γp→ K0 Σ+ → p π+π−π0) is described in the following sections.

3.12.1 General Description of the Method

In this event-based method, the set of coordinates that described the multi-dimensional phase

space of the reaction was categorized into two types: reference and non-reference coordinates [76].

The signal and background shapes had to be known a priori in the reference coordinate but this

knowledge was not required in the non-reference coordinates. Mass was typically chosen as the

reference coordinate. For each event, we then set out to find the Nc nearest neighbors in the phase

space of the non-reference coordinates. This was similar to binning the data using a dynamical bin

width in the non-reference coordinates and making sure that we had Nc events per fit.

The mass distribution of the Nc events (including the candidate event) in the reference coordi-

nate was then fitted with a total function defined as:

f(x) = N · [fs · S(x) + (1 − fs) · B(x)] , (3.16)

where S(x) denoted the signal and B(x) the background probability density function. N was a

normalization constant and fs was the signal fraction with a value between 0 and 1. The RooFit

package of the CERN ROOT software [62] was used for the fit procedure. Since Nc was usually

a small number (of the order of a few hundred events), an unbinned maximum likelihood method

was used for the fitting. The Q factor itself was given by:

Q =
s(x)

s(x) + b(x)
, (3.17)

where x was the value of the reference coordinate for the candidate event, s(x) = fs · S(x) and

b(x) = (1− fs) ·B(x). The Q factor could then be used as an event weight to determine the signal

contribution to any physical distribution.
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Table 3.16: The non-reference coordinates Γi and their ranges ∆i.

Γi Non-Reference Coordinate Maximum Range ∆i

Γ0 cos Θω
c.m. 2

Γ1 & Γ2 cos θHEL and φHEL 2 & 2π [radians]

Γ3 φωlab 2π [radians]

Γ4 λ 1

Γ5 incident photon energy Eγ (or W ) 20 MeV (10 MeV below 2.1 GeV)

3.12.2 The Q-Factor Method for the Reaction γp→ p ω → p π+π−π0 from the
g12 Data Sets

The kinematic variables that described the reaction γp → pω were chosen to be the incident-

photon energy, Eγ , and the center-of-mass angle of the outgoing ω, cos θ ωc.m.. Since we reconstructed

the ω from its decay into π+π− (π0), we also considered the relevant kinematic variables which

described the five-dimensional phase space of the 3π system. The ω decay was thus entirely defined

by five independent kinematic variables (including the invariant π+π−π0 mass we used as reference

variable). In total, we chose six non-reference variables:

• The incident photon energy Eγ (or alternatively, the total center-of-mass energy W ),

• The two angles of the ω meson in the helicity frame, cos θHEL and φHEL,

• The center-of-mass azimuthal and polar angles of the ω, and

• The decay parameter λ ∝ | ~pπ+ × ~pπ− |2 [54] .

The six non-reference coordinates and their maximum ranges used in the Q-factor method applied

to the g12 data sets are summarized in table 3.16.

For the signal-background separation in the ω → π+π−π0 analysis, we initially applied a small

CL > 0.001 cut (from kinematic fitting) on the γp → p π+π− (π0) final state. This loose CL cut

significantly reduced the background, in particular from γp → p π+π− events. We then used the

event-based technique to select ω events.

The data were divided into data subsets based on the photon energy (20-MeV wide bins). We

chose the number of 1000 nearest-neighbor events for each candidate event in the phase space
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spanned by the non-reference coordinates. The π+π−π0 invariant mass distribution of these

1000 events was then fitted over the mass range 650 - 900 MeV using the unbinned maximum-

likelihood technique. Since the natural width of the ω meson is 8.49 MeV and thus, at the level

of the detector resolution, we chose a Voigtian function for the signal pdf. The Voigtian function

is a convolution of a Gaussian, which was used to describe the resolution, and a Breit-Wigner,

which described the natural line shape of the resonance. The background shape was modeled with

a second-order Chebychev polynomial for incident photon energies above 1400 MeV. Close to the

reaction threshold of Eγ ≈ 1109 MeV, the ω signal peak is located very close to the upper 3π phase

space boundary. For this reason, we chose an Argus function instead of a Chebychev polynomial

to describe the background shape.

Table 3.17 shows the parameters of the signal and background pdfs and the constraints imposed

on them. The two pdfs were used to construct a total pdf (see Equation 3.16) and the Q factor of

the candidate event was extracted using Equation 3.17.

Table 3.17: Parameters of the signal and background probability-density functions. A Voigtian
was used to describe the ω signal and a second-order Chebychev polynomial (an Argus function for
Eγ < 1.4 GeV) was used to describe the background over the π+π−π0 mass range 650 - 900 MeV.

Probability Density Function Parameters Initial Value Fit Range

Voigtian

mean, µ 782.65 MeV [52] fixed

width, σ 8.0 MeV 0 - 30 MeV

natural width, Γ 8.49 MeV [52] fixed

Chebychev (Eγ > 1.4 GeV)
c0 0.5 0.0 - 1.8

c1 0.1 −1.2 - 1.2

Argus (Eγ < 1.4 GeV)
endpoint, m0 820 MeV 790.0 - 950.0 MeV

slope, c −1.0 −10.0 - 0.2

There were some analyses step that we performed to check the quality of the signal-background

separation:

1. Once the fit parameters were determined in an individual likelihood fit, we performed a least-

square “fit” of the same mass distribution from the 1000 events. Among other things, this

allowed us to plot the distribution of reduced-χ2 values as a goodness-of-fit measure. The
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left column of Figure 3.29 shows several such reduced-χ2 distributions for a few randomly-

selected example Eγ bins: (top to bottom row) Eγ ∈ [1.64, 1.66] GeV, Eγ ∈ [2.10, 2.12] GeV,

Eγ ∈ [4.00, 4.02] GeV, Eγ ∈ [5.00, 5.02] GeV. These reduced-χ2 distributions peak fairly close

to the ideal value of one. Given the fairly small number of events in these distributions, we

also concluded that the fitter picks up statistical fluctuations. This resulted in overconstrained

fits and slightly smaller reduced-χ2 values, about 0.7 - 0.8 on average.

2. Defined in terms of the pion momenta in the rest frame of the ω meson, the quantity λ =

| ~pπ+ × ~pπ− |2 / λmax is proportional to the ω → π+π−π0 decay amplitude as a consequence

of isospin conservation [25] with λmax defined as [63]:

λmax = T 2

(
T 2

108
+
mT

9
+
m2

3

)
(3.18)

for a totally symmetric decay, where T = T1 + T2 + T3 is the sum of the π±, 0 kinetic energies

and m is the π± mass. The parameter λ varies between 0 and 1 and shows a linearly-increasing

distribution as expected for a vector meson.

Figure 3.29 (center column) shows the λ distributions for the same energy bins as for the

corresponding reduced-χ2 distributions in the left column. The (red) signal was generated by

weighting event-by-event the (black) full distribution with theQ values; the (blue) background

distribution was generated by weighting the full distribution with 1−Q. The linear behavior

of the ω signal events is clearly visible.

Finally, ω → π+π−π0-mass distributions showing the full statistics in a given energy bin are

presented in Figure 3.29 (right column) for the selected Eγ bins discussed above and in 20-MeV-

wide bin for the entire CLAS-g12 energy range in Figures 3.30 - 3.33. Since we analyzed a total of

215 energy bins, we show the mass distribution for every sixth energy bin in these figures.

3.12.3 The Q-Factor Method for the Reaction γp→ p ω → p π+π−π0 from the
g9a Data Sets

Frozen beads of butanol (C4H9OH) were used for the target material. When the butanol was

polarized, only the 10 free hydrogen nucleons of the butanol could be polarized. Thus, contributions

from the free-proton events had to be separated from contributions of events off bound nucleons in

12C and 16O. The latter were subject to Fermi motion and the signals from them showed no partic-

ular structures since the particle peaks were broadened and mostly washed out. A dilution factor

describes the signal fraction and is generally defined as the ratio of the free-proton contribution

to the full butanol cross section. A simple calculation based on the chemical formula of butanol
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yields 10/74 = 0.135 as the ideal dilution factor. However, we also applied the Q-factor method for

the g9a data sets to remove the background contributions from the bound nucleons. We used the

same coordinates as in the g12 data sets shown in table 3.18 below. However, a number of nearest

neighbors, Nc = 300 was chosen instead of Nc = 1000 due to the statistics limitation in the g9a

data sets. The example of resulting invariant mass distributions are shown in figure 3.34.

Table 3.18: The non-reference coordinates Γi and their ranges ∆i for the g9a data sets.

Γi Non-Reference Coordinate Maximum Range ∆i

Γ0 cos Θω
c.m. 2

Γ1 & Γ2 cos θHEL and φHEL 2 & 2π [radians]

Γ3 φωlab 2π [radians]

Γ4 λ 1

Γ5 incident photon energy Eγ-lab 100 MeV

3.12.4 The Q-Factor Method for the Reaction γp→ K0
S Σ+ from the g12 Data

Sets

The reconstruction of the K0
S Σ+ final state differs from the ω. While the latter is based directly

on the π+π−π0 system, the strange KS is reconstructed from the π+π− system and the remaining

π0 originates from the baryon decay. Since the KS → π+π− and the Σ+ → pπ0 are highly correlated

(associated strangeness production), the reference quantity can either be the invariant π+π− mass or

the invariant pπ0 mass. We determined Q values independently applying both approaches, which

serves as a cross check when comparing the cross sections. Table 3.19 shows the non-reference

variables used for the background subtraction in this reaction. The quantities in parentheses are

the non-reference coordinates used for the Q values based on the invariant pπ0 mass.

Since the cross section for the reaction γp → K0 Σ+ is relatively small, the observed statistics

is low and the invariant π+π− mass is dominated by background in the mass region of the KS (see

Fig. 3.35, top left). Therefore, we considered two mass cuts before we applied the Q-factor method:

1. Strangeness is conserved in electromagnetic and strong interactions. For this reason, the

KS meson is produced together with a Σ+ baryon (in our analysis). The life time of the

Σ+ (τ = (0.8018 ± 0.0026) × 10−10 s) is fairly long since it can only decay weakly. We thus
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applied a narrow cut of 20 MeV around the Σ+ mass of 1189.37 MeV [52]. The effect can

be seen in Figure 3.35 (top row). The left side shows the raw π+π− distribution of all g12

π+π−π0 events in Period 2 (see Table 3.2), whereas the right side shows the same distribution

after the Σ+ cut. The background is significantly reduced and the KS peak is clearly visible;

the KS Σ+ statistics is only marginally affected.

2. The dominant reaction contributing to the p π+π−π0 final state is ω production. The bottom

row of Figure 3.35 shows the invariant π+π−π0 mass vs. the corresponding π+π− mass (left

side). The vertical band for the ω is clearly visible and moreover, it exhibits a maximum

intensity in the vicinity of the KS in the projection onto the π+π− axis. Therefore, we

applied a mass cut to remove contributions from ω production: mπ+π−π0 < 752 MeV and

mπ+π−π0 > 812 MeV. The resulting (final) π+π− mass distribution showing the KS peak is

given on the right side. A comparison of Figure 3.35 (top right) and Figure 3.35 (bottom

right) indicates that only little KS Σ+ statistics is lost due to the ω cut.

The two-dimensional distribution also explains the two structures which can be observed in the

projection onto the π+π− axis (right side of Figure 3.35): (1) The peak around 400 MeV is the

reflection of the η → π+π−π0 which is cut off at the phase-space boundary, and (2) the enhancement

around 550 MeV is most likely based on the η decaying into π+π−γ.

To subtract the background for the KS Σ+ final state, the selected g12 data were divided into

50-MeV-wide incident-photon energy bins for the cross-section measurement and 100-MeV-wide

energy bins for the measurement of the induced polarization. We then chose a 1000 nearest-neighbor

events for each signal candidate in the phase space spanned by the non-reference coordinates. The

Table 3.19: The non-reference coordinates Γi and their ranges ∆i. Note that we used 100-MeV-wide
incident-photon bins for the induced polarization.

Γi Non-Reference Coordinate Maximum Range ∆i

Γ0 incident-photon energy Eγ 50 MeV

Γ1 & Γ2 cos θπ+ (cos θp) & φπ+ (φπ0) in the π+π− (pπ0) rest frame 2 & 2π

Γ3 cos ΘKS
c.m. in the center-of-mass frame 2

Γ4 φKSlab 2π

Γ5 cos (opening angle ∠ (p, π0)) 2
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Table 3.20: Parameters of the signal & background probability-density functions. A Gaussian was
used to describe the signal and a second-order Chebychev polynomial to describe the background.

Ref. Coordinate: π+π− Mass Ref. Coordinate: pπ0 Mass

Initial Value Fit Range Initial Value Fit Range

Mean, µ 497.61 MeV [52] fixed 1189.37 MeV [52] fixed
Gaussian pdf

Width, σ 4.5 MeV 2.0 - 8.0 MeV 4.5 MeV 0.0 - 9.0 MeV

Chebychev pdf
c0 0.1 −1.5 - 1.5 0.1 −1.5 - 1.5

c1 0.1 −1.5 - 1.5 0.1 −1.5 - 1.5

invariant π+π− mass distribution of these 1000 events was fitted over the mass range 473 - 523 MeV

for the KS and independently, the pπ0 distribution was fitted over the mass range 1149 - 1229 MeV

for the Σ+ using the unbinned maximum-likelihood technique. Since the KS decays weakly into

π+π− with a mean life τ of about (8.954± 0.004)× 10−11 s [52] (and has thus a narrow natural

width), we chose a Gaussian function for the signal pdf and a second-order Chebychev polynomial

for the background. Table 3.20 shows the parameters of the signal and background pdfs and the

constraints imposed on them.

Figures 3.37 - 3.41 show the complete set of invariant π+π− mass distributions (left) and the

corresponding pπ0 mass distributions (right) for 100-MeV-wide incident-photon energy bins in the

range Eγ ∈ [ 1100, 3000 ] MeV (full statistics used in this analysis). Finally, Fig. 3.36 presents

example distributions of Eγ ∈ [1400, 1500] MeV and Eγ ∈ [1600, 1700] MeV.

Note that a full set of Q values for all events is not necessarily unique. If the Q values are

determined for the KS , then the weighted π+π− mass distribution will show a clear separation of

KS signal and background. However, the pπ0 mass distribution weighted with the same Q values

will still exhibit some background under the Σ+ signal. The same is true if the Q values are

determined for the Σ+, in which case some background under the KS will be observed. For a

counting experiment like a cross-section measurement, either approach can be used. For an analysis

however which requires the full event information, a more sophisticated method would be needed,

e.g. a simultaneous fit of both mass distributions.

The measurement of the Σ+ recoil polarization was based on the asymmetry between the proton

count rate above and below the reaction plane, taken in the Σ+ rest frame (for more details, see
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Section 4.4). For this reason, we used the invariant pπ0 mass as the reference coordinate in the

determination of Q values for both the final cross sections and the polarization observable. The

(kinematic) decay information – the crucial opening angle between the proton and the π0 – was

added to the distance metric (Table 3.19). The KS-peak-beased Q values were used to cross-check

our final cross-section results.

3.12.5 The Q-Factor Method for the Reaction γp→ K0
S Σ+ from the g9a Data

Sets

For the KSΣ+ channel from the g9a data sets, we have concentrated on using the invariant π+π−

as a reference variable since the Σ+ peak is hardly visible in the pπ0 invariant mass distributions

as shown in figure 3.42. The suboptimal quality of the Σ+ peak originates from the fairly poor

resolution of the pπ0 system, which make the background subtraction challenging.

Table 3.21 shows the non-reference coordinates Γi and their ranges used in the Q-factor method.

We use the same signal and background probability-density functions as in g12 and described in

table 3.20. We have also applied the same ω and Σ+ mass cut as shown in figure 3.43. Finally,

Fig. 3.44 presents example distributions of the resulting π+π− invariant mass.

Table 3.21: The non-reference coordinates Γi and their ranges ∆i for the Q-factor method applied
to the KSΣ+ channel from the g9a data sets.

Γi Non-Reference Coordinate Maximum Range ∆i

Γ0 incident-photon energy Eγ 200 MeV

Γ1 & Γ2 cos θπ+ & φπ+ in the π+π− rest frame 2 & 2π

Γ3 cos ΘKS
c.m. in the center-of-mass frame 2

Γ4 φKSlab 2π

Γ5 cos (opening angle ∠ (p, π0)) 2

100



red
2χ

0 0.5 1 1.5 2 2.5 3 3.5

C
o
u
n
ts

0

5

10

15

20

25

30

310×

λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
u
n
ts

0

0.5

1

1.5

2

2.5
310×

 Mass [MeV]0π-π+πInvariant 
700 750 800 850 900 950

C
o

u
n

ts

0

1

2

3

4

5

6

7
310×

red
2χ

0 0.5 1 1.5 2 2.5 3 3.5

C
o
u
n
ts

0
2
4
6
8
10
12
14
16
18
20
22

310×

λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
u
n
ts

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

310×

 Mass [MeV]0π-π+πInvariant 
700 750 800 850 900 950

C
o

u
n

ts

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

310×

red
2χ

0 0.5 1 1.5 2 2.5 3 3.5

C
o
u
n
ts

0

100

200

300

400

500

600

700

800

λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
u
n
ts

0

10

20

30

40

50

60

70

80

90

 Mass [MeV]0π-π+πInvariant 
700 750 800 850 900 950

C
o

u
n

ts

0

20

40

60

80

100

120

140

red
2χ

0 0.5 1 1.5 2 2.5 3 3.5

C
o
u
n
ts

0

50

100

150

200

250

300

350

400

λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
u
n
ts

0

5

10

15

20

25

 Mass [MeV]0π-π+πInvariant 
700 750 800 850 900 950

C
o

u
n

ts

0

5

10

15

20

25

30

35

Figure 3.29: Quality checks - shown are randomly selected Eγ bins across a wide range in the
incident photon energy: (top to bottom row) Eγ ∈ [1.64, 1.66] GeV, Eγ ∈ [2.10, 2.12] GeV,
Eγ ∈ [4.00, 4.02] GeV, Eγ ∈ [5.00, 5.02] GeV. (Left column) Examples of reduced-χ2 distributions.
(Center) Examples of λ distributions. (Right) The full mass distribution for the energy bin. The
black line denotes the full distribution, the red line the signal, and the blue solid line the background
distribution.
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Figure 3.30: Invariant π+π−π0 mass distributions for the reaction γp→ pω. Shown is every sixth
20-MeV-wide Eγ bin starting at Eγ ∈ [1200, 1220] MeV (top left), Eγ ∈ [1220, 1240] MeV (top
right), etc.
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Figure 3.31: Invariant π+π−π0 mass distributions for the reaction γp→ pω. Shown is every sixth
20-MeV-wide Eγ bin starting at Eγ ∈ [2120, 2140] MeV (top left), Eγ ∈ [2140, 2160] MeV (top
right), etc.
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Figure 3.32: Invariant π+π−π0 mass distributions for the reaction γp→ pω. Shown is every sixth
20-MeV-wide Eγ bin starting at Eγ ∈ [3200, 3220] MeV (top right). The [3080, 3100] MeV bin is
missing owing to tagger inefficiencies.
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Figure 3.33: Invariant π+π−π0 mass distributions for the reaction γp→ pω. Shown is every sixth
20-MeV-wide Eγ bin starting at Eγ ∈ [4080, 4100] MeV (top left), Eγ ∈ [4200, 4220] MeV (top
right), etc.
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Figure 3.34: Examples of invariant π+π−π0 mass distributions for the reaction γp→ pω from the
g9a data sets in the photon energy range Eγ ∈ [1.5; 1.6] GeV [33]. The solid blue area indicates
the background.
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Figure 3.35: Top row: Invariant π+π− mass distribution of all g12 π+π−π0 events in Period 2 (left)
and the same invariant π+π− mass distribution after the Σ+ cut (right). Bottom row: Invariant
π+π−π0 mass vs. the corresponding π+π− mass of all g12 π+π−π0 events in Period 2 (left) and the
same invariant π+π− mass distribution shown in the top row after the ω and the Σ+ cuts (right).
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Figure 3.36: Examples of π+π− distributions for γp → KS Σ+. Top row: Eγ ∈ [1400, 1500] MeV.
Bottom row: Eγ ∈ [1600, 1700] MeV. The left side is for −0.6 < cos θKSc.m. < −0.4, the right side is
for 0.0 < cos θKSc.m. < 0.2.
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Figure 3.37: Invariant π+π− distributions (left column) and the corresponding pπ0 distributions
(right column) for the reaction γp→ KS Σ+. Shown are the full statistics (top row) and 100-MeV-
wide energy bins starting at Eγ ∈ [1.1, 1.2] GeV (second row), Eγ ∈ [1.2, 1.3] GeV (third row),
etc.
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Figure 3.38: Invariant π+π− distributions (left column) and the corresponding pπ0 distributions
(right column) for the reaction γp → KS Σ+. Shown are 100-MeV-wide energy bins starting at
Eγ ∈ [1400, 1500] MeV (top row), Eγ ∈ [1500, 1600] MeV (second row), etc.
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Figure 3.39: Invariant π+π− distributions (left column) and the corresponding pπ0 distributions
(right column) for the reaction γp → KS Σ+. Shown are 100-MeV-wide energy bins starting at
Eγ ∈ [1800, 1900] MeV (top row), Eγ ∈ [1900, 2000] MeV (second row), etc.
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Figure 3.40: Invariant π+π− distributions (left column) and the corresponding pπ0 distributions
(right column) for the reaction γp → KS Σ+. Shown are 100-MeV-wide energy bins starting at
Eγ ∈ [2200, 2300] MeV (top row), Eγ ∈ [2300, 2400] MeV (second row), etc.
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Figure 3.41: Invariant π+π− distributions (left column) and the corresponding pπ0 distributions
(right column) for the reaction γp → KS Σ+. Shown are 100-MeV-wide energy bins starting at
Eγ ∈ [2600, 2700] MeV (top row), Eγ ∈ [2700, 2800] MeV (second row), etc.
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Figure 3.42: Invariant pπ0 mass distribution of all g9a π+π−π0 events (left) and the same mass
distribution after 30 MeV cut around the KS peak (right). The Σ+ is hardly visible and only
slightly improves after the KS mass cut.

Figure 3.43: Top row: Invariant π+π− mass distribution of all g9a events (left) and the same mass
distribution after a narrow cut of 20 MeV around the Σ+ peak. Bottom row: Invariant π+π−π0

mass vs. the corresponding π+π− mass of all g9a events (left) and the same invariant π+π− mass
distribution shown in the top row after the ω and the Σ+ cuts (right).
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Figure 3.44: Invariant π+π− distributions for the reaction γp → KSΣ+. Shown are the full
statistics (top row) and 200-MeV-wode energy bins starting at Eγ ∈ [1.1, 1.3] GeV (second row,
left) up to Eγ ∈ [1.7, 1.9] GeV (third row, right).
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CHAPTER 4

GENERAL PHYSICS ANALYSIS

After all corrections and cuts were applied and signal-background separation was carried out, the

extraction of cross sections (and some polarization observables) from the carefully selected events

could commence. This chapter presents the methodology used in the extraction of these observables

from the experimental data.

4.1 Kinematics and Observables

4.1.1 Binning and Angles in the γp→ p ω Analysis

The kinematics of ω photoproduction off the proton can be completely described by two kine-

matic variables. We chose these variables to be the incident photon energy, Eγ (alternatively W ),

and the cosine of the polar angle of the ω meson in the center-of-mass frame, cos Θω
c.m., where the

z-axis was defined along the incoming photon beam (see Figure 4.1). Alternatively, we also used

the Mandelstam variable t and a representation of the differential cross sections in dσ/dt.

Figure 4.1: A diagram describing the kinematics of the reaction γp→ pω. The blue plane represents
the center-of-mass production plane composed of the initial photon and the recoiling proton. The
angle Θc.m. denotes the angle between the initial proton and the ω meson in the center-of-mass
system. The z-axis is chosen to be along the direction of the incoming photon beam. The y-axis is
defined as ŷ = p̂ rec×ẑ

|p̂ rec×ẑ| , where p̂ rec is a unit vector along the momentum of the recoil proton. The

x-axis then lies in the production plane. Image source [34].
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We have extracted differential cross sections, dσ/dΩ and dσ/dt, as well as spin-density matrix

elements (SDMEs) from the g12 data sets, for the incident-photon energy range 1.5 < Eγ < 5.4 GeV

or 1.92 < W < 3.3 GeV. The data were binned in 20-MeV-wide W bins for the differential cross

sections, and in 20-MeV-wide W bins for the SDMEs, and both covered an energy range from

1.92 < W < 3.3 GeV. Note that CLAS had poor acceptance for three-track events in the very

forward and backward directions in the center-of-mass frame.

We have also extracted one double polarization observable, which is the helicity asymmetry, E,

from the g9a data sets, for the incident-photon energy range 1.1 < Eγ < 2.3 GeV. The data were

binned in 100-MeV-wide Eγ bins 6.2.1.

4.1.2 Binning and Angles in the γp→ K0 Σ+ Analysis

The K0 Σ+ final state is a two-body final state consisting of a meson (M) and a baryon (B),

very similar to the previous reaction (M = ω ; B = p). For this reason, the kinematics is again

represented by the diagram in Figure 4.1 when the recoil p is replaced with the Σ+ and the ω is

replaced with the K0.

We have extracted the differential cross sections dσ/dΩ for the incident-photon energy range

1.15 < Eγ < 3.0 GeV and the induced polarization, P , of the Σ+ hyperon from the g12 data

sets. For the cross sections, we have used 50-MeV-wide Eγ bins in the incident-photon energy and

0.1-wide angle bins in cos ΘKS
c.m..

The angular distribution of the decay nucleon is given by [64, 65]:

W (ΘN ) =
1

2
(1 + αP cos (ΘN )) , (4.1)

where the parameter P denotes the hyperon polarization and ΘN is the decay angle of the nucleon

measured with respect to the normal of the production plane of K0
S and Σ+ in the Σ+ rest frame.

For the recoil polarization, we have used 100-MeV-wide Eγ bins in the incident-photon energy and

0.1-wide angle bins in cos Θ c.m. of the KS .

We have also extracted the helicity asymmetry, E, for the reaction γp → K0 Σ+ from the g9a

data sets, for the incident-photon energy range 1.1 < Eγ < 2.1 GeV. The data were binned in

200-MeV-wide Eγ bins and and 0.4-wide angle bins in cos ΘKS
c.m..
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4.2 Extraction of Cross Sections in γp→ p ω/K0 Σ+ from the g12
Data Sets

The differential cross sections for all reactions were determined according to

dσ

dΩ
=

N reaction

A reaction

1

Nγ ρ target

1

∆Ω

1

BR
, (4.2)

where

ρ target : target area density

N reaction : number of reconstructed data events in an (Eγ , cos θc.m.) or (W , cos θc.m.) bin

Nγ : number of photons in an Eγ bin (photon flux)

A reaction : acceptance in an (Eγ , cos θc.m.) or (W , cos θc.m.) bin

∆Ω : solid-angle interval ∆Ω = 2π∆cos (θc.m.)

BR : decay branching fraction.

The target area density, i.e. the number of atoms in the target material per cross-sectional area

(orthogonal to the photon beam), is given by

ρ target = 2
ρ(H2)NA L

Mmol (H2)
, (4.3)

where ρ(H2) = 0.0711± 1.75 · 10−5 g/cm3 [46] is the density of the liquid hydrogen target used in the

g12 experiment, and Mmol = 2.01588 g/mol is the molar mass of liquid H2. NA = 6.022 ·1023 mol−1

is the Avogadro number and L = 40.0 cm the length of the g12-target cell. The factor of two

accounts for the molecular composition of hydrogen (H2).

We have used a value of ρ target = 16.992 · 10−7µb−1 for all cross sections.

An object’s solid angle in steradians is equal to the area of the segment of a unit sphere, centered

at the angle’s vertex, that the object covers. A solid angle in steradians equals the area of a segment

of a unit sphere in the same way a planar angle in radians equals the length of an arc of a unit

circle. The solid angle of a sphere measured from any point in its interior is 4π sr. In spherical

coordinates:

Ω =

∫∫
S

sin θ dθ dφ = 2 · 2π = 4π , (4.4)

where 2π originates from integrating over dφ and the factor of 2 from integrating over sin θ dθ.

Since the differential cross sections are integrated over φ lab, but are binned in cos θc.m., we used
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∆Ω = 2π∆cos (θc.m.) in Equation 4.2 and ∆cos (θc.m.) = 2 / (# of angle bins):

∆Ω = 2π · 2 / 20 = 0.6283. (4.5)

We have used the following values [52] for the branching fraction of our channels:

pω : Fraction Γi /Γ = (89.2± 0.7) % (ω → π+π−π0), i.e. BR = 0.892.

K0 Σ+ : Fraction Γi /Γ = (69.20± 0.05) % (KS → π+π−) as well as

Γi /Γ = (51.57± 0.30) % (Σ+ → p π0), i.e. BR = 0.5 · 0.5157 · 0.6920 = 0.1784.

The factor of 0.5 for K0 Σ+ accounts for the mixture of K0 being 50 % KS and 50 % KL.

For the absolute normalization, we have used the standard CLAS gflux package which was

originally developed by James Ball and Eugene Pasyuk [67]. A detailed description on how to use

gflux for the CLAS-g12 experiment can be found in Ref. [46]. Table 4.1 gives the actual numbers

we have used for all cross sections: γp→ pω and γp→ KS Σ+.

CEBAF delivers electrons in bunches separated by 2 ns. Increasing the current in the accelerator

increases the number of electrons in each bunch. Most of the g12 data were recorded at high curents

of 60 - 65 nA, which corresponded to a photon flux of about 5 × 108 γ per second. The high current

of the g12 experiment led to some ambiguity in selecting the correct photon for some events. About

14.26 % of all events had more than one incident photon that passed the coincidence-time cut or

|∆ tTGPB| < 1 ns (Section 3.3.1).

In the determination of the cross sections, we had to correct for the 14.26 % of all events which

had more than one photon candidate within the allowed coincidence-time window. Since the Monte

Carlo did not simulate the incident photons and the corresponding timing, we corrected the photon

flux by 85.74 % or simply multiplied the signal yield by 1 / 0.8574 = 1.166.

4.3 Extraction of Spin-Density Matrix Elements in γp→ pω from
the g12 Data Sets

The decay distribution of the ω meson yields information about its polarization. This polariza-

tion information can also be used to gain insight into the nature of the production amplitudes. The

description of the angular distribution of the decay-plane normal relative to the production rest

frame is often referred to as Schilling equation [68]. Since the ω is a spin-1 particle, its polarization
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information contained in the spin-density matrix has nine complex elements. For an unpolarized

photon beam however, parity, hermiticity and normalization reduce the number of independent

elements to four real quantities, three of which are measurable. These are typically chosen to be

ρ0
00, ρ

0
1−1 and Re(ρ0

10).

The Schilling equation for the normalized angular distribution in vector-meson photoproduction

using an unpolarized beam and an unpolarized target is given by:

dN

dcos θ dφ
= W (θ, φ)

=
3

4π

(
1

2

(
1− ρ0

00

)
+

1

2

(
3ρ0

00 − 1
)

cos2θ − ρ0
1−1 sin2θ cos 2φ−

√
2Re(ρ0

10) sin 2θ cos φ

)
,

(4.6)

where the (θ, φ) distribution is defined in the Adair frame. If the four-momentum of the incident

photon and ω meson in the overall center-of-mass frame are denoted by k and q, respectively, the

coordinate system in the Adair frame is defined as:

ẑ = k̂ ŷ =
~k × ~q
|~k × ~q|

x̂ = ŷ × ẑ. (4.7)

The decay angles are defined as:

cos θ = π̂ · ẑ (4.8)

cosφ =
ŷ · (ẑ × π̂)

|ẑ × π̂|
sinφ = − x̂ · (ẑ × π̂)

|ẑ × π̂|
, (4.9)

where π̂ is equal to the normal to the decay plane in the ω rest frame.

The set of Spin-Density Matrix Elements (SDMEs) for each (cosωc.m.,
√
s) bin can be extracted

using the event-based Extended Maximum Likelihood Method (EMLM). We begin by defining the

likelihood function as:

L =
( n̄n
n!
e−n̄

) n∏
i

P(~x,Xi) , (4.10)

where the term in parentheses is the Poisson probability of obtaining n events with the expected

value n̄. P(~x,Xi) is the probability density function of event i with parameter set ~x and kinematic

factors Xi.

The goal is to find the set of parameters ~x = {ρ0
00, ρ

0
1−1, Re(ρ

0
10)} that maximizes L. The

likelihood function in the form of Eqn. 4.10, when iterated over a large number of events, grows
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quickly to very large values. Since the natural logarithm is a monotonously-increasing function, it

is computationally easier to work with − lnL instead of L. Thus, minimizing − lnL is equivalent

to maximizing L. From Eqn. 4.10, we can write the log likelihood as:

− lnL = −n ln n̄ + lnn! + n̄ −
n∑
i

lnP(~x, Xi) . (4.11)

The probability density for each event is proportional to the production cross section σγp→ pω (Xi),

the decay amplitude Aω→π+π−π0 (Xi), the normalized angular distribution W (~x, Xi), and the

detector acceptance η (Xi). Therefore, we can write the probability density as:

P(~x,Xi) =
σγp→ pω (Xi)Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi)∫
σγp→ pω (Xi)Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi) dΦ

. (4.12)

The goal is to measure the set of ~x = {ρ0
00, ρ

0
1−1, Reρ

0
10} for each (cosωc.m.,

√
s) bin. Since the pro-

duction cross section, σγp→ pω (cosωc.m,
√
s), is just a number, it can be dropped from the probability

density function:

P(~x,Xi) =
Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi)∫
Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi) dΦ

. (4.13)

The cross section for ω photoproduction is defined as:

σγp→ pω =
N

F ρtarget ltargetNA /Atarget
, (4.14)

where N is the number of scattering events, F is the photon flux, ρtarget, ltarget, Atarget are the

density, length, and atomic weight of the target, respectively; NA is Avogadro’s number. Therefore,

the expected number of data events n̄ is:

n̄ =
F ρtarget ltargetNA

Atarget
σγp→ pω

∫
Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi) dΦ . (4.15)

The log likelihood function now takes the form:

− lnL = TF σγp→ pω

∫
Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi) dΦ −

n∑
i

lnW (~x, Xi) + F (Xi) + C ,

(4.16)

where

TF =
F ρtarget ltargetNA

Atarget
, (4.17)

C is a constant and F (Xi) is a function that depends only on the kinematics. We can drop C and

F (Xi) from the Eqn. 4.16 since they do not depend on the parameters ~x. The integration is done

numerically using the Monte Carlo technique.
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For this technique, Nraw events are randomly generated according to γp → pω, with ω →

π+π−π0 phase space. The integral can then be approximated by:∫
Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi) dΦ ≈

∫
dΦ

Nraw

Nraw∑
i

Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi) . (4.18)

To obtain the values for η(Xi), each event is run through a GEANT-based detector simulation

package, discussed in detail in Section 3.7. This procedure simulates the acceptance of the CLAS

detector by rejecting those events that do not survive the data analysis. Thus, for each event, the

acceptance is η(Xi) = 0 or 1. We denote the number of accepted Monte Carlo events by Nacc. We

can then rewrite the integral approximation as:∫
Aω→π+π−π0 (Xi)W (~x, Xi) η(Xi) dΦ ≈

∫
dΦ

Nraw

Nacc∑
i

Aω→π+π−π0 (Xi)W (~x, Xi) . (4.19)

The decay amplitude Aω→π+π−π0 is proportional to the pion’s momentum in the ω rest frame [63]

and proportional to the λ quantity that we defined in Section 3.12.1:

Aω→π+π−π0 ∝ λ =
|~pπ+ × ~pπ− |2

T 2
(
T 2

108 + mT
9 + m2

3

) , (4.20)

where T is the sum of the π±,0 and m is the π± mass.The value of λ varies between 0 and 1. Thus,

the phase-space integral on the right side of Eqn. 4.19 is:∫
dΦ =

∫
dΩ dλ = 4π . (4.21)

Finally, the log-likelihood function takes on the form:

− lnL = TF σγp→ pω
4π

Nraw

Nacc∑
i

λiW (~x, Xi) −
n∑
i

lnW (~x, Xi) . (4.22)

After obtaining the Q value for each event, which provides the probability that the event is a

pω event, this Q value can be used to weight the event’s contribution to the log likelihood:

− lnL = TF σγp→ pω
4π

Nraw

Nacc∑
i

λiW (~x, Xi) −
n∑
i

Qi lnW (~x, Xi) , (4.23)

where Qi is the Q value for event i. The CERNLIB package MINUIT was used to minimize − lnL.

The minimization algorithm that we used is called MIGRAD.
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4.4 Extraction of the Hyperon Polarization in γp→ K0 Σ+ from
the g12 Data Sets

The Σ+ is produced via the electromagnetic (or strong) interaction but decays to a proton and

a π0 via the weak interaction. Since the weak decay violates parity, the polarization of the Σ+ can

be extracted from the angular distribution of one of the decay products in the Σ+ rest frame. This

observable is called recoil (or induced) polarization and is named P (Eqn. 4.1).

The kinematic situation is shown schematically in Fig. 4.2. The incident photon and the recoiling

K0 define the reaction plane. The angular distribution of the proton in the Σ+ rest frame is then

described by (see Eqn. 4.1):

W (θp) =
1

2
(1 + αP cos (θp)) ,

where θp is the angle between the proton momentum vector in the Σ+ rest frame and the normal

of the reaction plane. The parameter α is the degree of parity mixing and for Σ+ → pπ0, has a

value of α = −0.98± 0.016 [52].

To determine the polarization observable, we integrate over all the events above the reaction

plane (up) as well as below the reaction plane (down). The P observable can then be expressed as:

P =
2

α

σup − σdown

σup + σdown
. (4.24)

Since the whole detector is φ symmetric, acceptance effects in the enumerator and the denominator

cancel out. Therefore, we can also express the polarization observable P simply in terms of count

rates:

P =
2

α

Nup − Ndown

Nup + Ndown
, (4.25)

where Nup and Ndown are the number of events with the proton in the direction above and below

the reaction plane, respectively.

4.5 Extraction of the Helicity Asymmetry in γp→ p ω/K0 Σ+

from the g9a Data Sets

Data with an unpolarized- or a circularly-polarized beam in combination with an unpolarized-

or a longitudinally-polarized target are isotropic in the lab azimuthal angle since the polarization(s)
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Figure 4.2: The recoil polarization of the Σ+ shown schematically. The plane indicates the reaction
plane defined by the incoming γ and the outgoing Σ+ in the center-of-mass frame. Image source [37].

lie along the z-axis in the lab frame. Hence, the angular distribution in the lab frame of any final-

state particle will be flat after an acceptance correction. In such cases, the asymmetry – in any

kinematic bin – between the number of events with orthogonal polarization orientations is just

a number (instead of a function of the lab azimuthal angle). The polarization observables are

then easily extracted from these measured asymmetries. Thus, measuring E is a simple counting

experiment.

In the case of the helicity asymmetry, E, the data were divided into two subsets based on the

spin orientations of the beam and the target. Using g9a data, the observable could be determined

seven times from the seven different g9a periods. Two data sets with→ and← beam helicity were

required and either ⇒ or ⇐ target polarization, wehere → (←) and ⇒ (⇐) indicate if the photon

helicity and target polarization are parallel (antiparallel) to the beam axis.

Since the beam helicity flips at a large rate, the flux, Φ, and the acceptance, ε, are the same

for both subsets. For the same reason, the degree of beam polarization for the two helicity states

can be considered the same and is denoted by δ�. Then, in any kinematic bin, for the circularly-

polarized beam and longitudinally-polarized target, the number of events for each helicity and spin

orientation can be related to E using Equation 1.29. They are given by:

N⇒→ = Φ ε σ0 ( 1 − Λz δ�E ) ,

N⇐→ = Φ ε σ0 ( 1 + Λz δ�E ) ,

N⇒← = Φ ε σ0 ( 1 + Λz δ�E ) ,

N⇐← = Φ ε σ0 ( 1 − Λz δ�E ) .

(4.26)

123



where δ� denotes the degree of circular-beam polarization and Λz indicates the degree of longitudinal-

target polarization. Therefore, the helicity asymmetry, E, in a kinematic bin is given by:

E =
1

Λz δ�

N⇒← −N⇒→
N⇒← +N⇒→

,

=
1

Λz δ�

N⇐→ −N⇐←
N⇐→ +N⇐←

.

(4.27)

If each event is assigned a weight, wi (a Q value, for instance), then the effective number of

signal events for the two beam-helicity states will be given by:

N ′ =
N∑
i=1

wi . (4.28)

The asymmetry is then formed from these effective counts.
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Table 4.1: Total g12 photon flux for 50-MeV-wide incident photon-energy bins used in our analyses
for the run range 56521 - 56646 (Period 2).

Eγ [ GeV ] Photon Flux Eγ [ GeV ] Photon Flux Eγ [ GeV ] Photon Flux

2.50 - 2.55 302735185984.0 4.00 - 4.05 140606283698.0

2.55 - 2.60 259964248500.0 4.05 - 4.10 149223684420.0

1.10 - 1.15 4337260656.3 2.60 - 2.65 254886921499.0 4.10 - 4.15 140423638221.0

1.15 - 1.20 337833236168.0 2.65 - 2.70 259744931434.0 4.15 - 4.20 167418318127.0

1.20 - 1.25 574495330532.0 2.70 - 2.75 224963728409.0 4.20 - 4.25 152175155236.0

1.25 - 1.30 496274905472.0 2.75 - 2.80 203753682420.0 4.25 - 4.30 160068141472.0

1.30 - 1.35 485238697908.0 2.80 - 2.85 242060106771.0 4.30 - 4.35 128465044374.0

1.35 - 1.40 349080941294.0 2.85 - 2.90 238390370808.0 4.35 - 4.40 90453090800.2

1.40 - 1.45 508526554976.0 2.90 - 2.95 231067058790.0 4.40 - 4.45 64699027048.5

1.45 - 1.50 497502848514.0 2.95 - 3.00 201595160599.0 4.45 - 4.50 158368725065.0

1.50 - 1.55 460473338930.0 3.00 - 3.05 233214036559.0 4.50 - 4.55 158892370026.0

1.55 - 1.60 399150479194.0 3.05 - 3.10 184728636406.0 4.55 - 4.60 136955763789.0

1.60 - 1.65 446872653860.0 3.10 - 3.15 213765127885.0 4.60 - 4.65 137198213594.0

1.65 - 1.70 395792605738.0 3.15 - 3.20 164173778322.0 4.65 - 4.70 139594283568.0

1.70 - 1.75 415054272952.0 3.20 - 3.25 199344803385.0 4.70 - 4.75 142168709686.0

1.75 - 1.80 408411797706.0 3.25 - 3.30 207673397085.0 4.75 - 4.80 102093637851.0

1.80 - 1.85 397650894046.0 3.30 - 3.35 178704643413.0 4.80 - 4.85 123160541637.0

1.85 - 1.90 345708998882.0 3.35 - 3.40 196705358312.0 4.85 - 4.90 147419199730.0

1.90 - 1.95 365121651368.0 3.40 - 3.45 191004264574.0 4.90 - 4.95 155283230557.0

1.95 - 2.00 304992117538.0 3.45 - 3.50 179980234595.0 4.95 - 5.00 120930458861.0

2.00 - 2.05 336131767024.0 3.50 - 3.55 77594303520.0 5.00 - 5.05 116822823306.0

2.05 - 2.10 347415226190.0 3.55 - 3.60 284139117094.0 5.05 - 5.10 150662097632.0

2.10 - 2.15 291012042438.0 3.60 - 3.65 186509696181.0 5.10 - 5.15 139170116274.0

2.15 - 2.20 329423974509.0 3.65 - 3.70 155345103910.0 5.15 - 5.20 129656508095.0

2.20 - 2.25 349551671915.0 3.70 - 3.75 159517908396.0 5.20 - 5.25 137811011294.0

2.25 - 2.30 260462654486.0 3.75 - 3.80 160555585107.0 5.25 - 5.30 116376757558.0

2.30 - 2.35 306607804116.0 3.80 - 3.85 170460273002.0 5.30 - 5.35 135718523976.0

2.35 - 2.40 289476321935.0 3.85 - 3.90 162365775438.0 5.35 - 5.40 125968316090.0

2.40 - 2.45 256426694871.0 3.90 - 3.95 164569658388.0 5.40 - 5.45 134541705938.0

2.45 - 2.50 241361136501.0 3.95 - 4.00 173623146606.0 5.40 - 5.45 134541705938.0

5.45 - 5.50
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CHAPTER 5

SYSTEMATIC UNCERTAINTIES

5.1 Systematic Uncertainties in the g12 Experiment

5.1.1 Contribution from the Q - Factor Method

Assigning a Q value to a particular event required to fit the mass distribution of the event and its

neighbors using the likelihood technique. The covariance matrix, Cη, for the set of fit parameters,

~η, could be used to determine the uncertainty of the Q value for the given event:

σ2
Q =

∑
i, j

∂Q

∂ηi

(
C−1
η

) ∂Q
∂ηj

. (5.1)

The Q factor method led to some correlations among events and their nearest neighbors because

events could serve as neighbors for many seed events. The systematic “correlation” uncertainty of

the ω yield due to this method in a particular kinematic bin was then given by:

σ2
ω =

∑
i, j

σiQ ρij σ
j
Q , (5.2)

where the sum i, j was taken over the events in the bin, σiQ and σjQ were the fit uncertainties for

events i and j, and ρij was the correlation factor between events i and j. The correlation factor

simply represented the fraction of shared nearest-neighbor events.

If we assumed 100 % correlation between events in a kinematic bin, then the uncertainty of the

ω yield could be written as:

σ2
ω =

( N∑
i

σiQ

)2
. (5.3)

This assumption could significantly overestimate the uncertainty. In this analysis, we did not use

the assumption of 100 % - correlated events but properly determined the uncertainties according

to Eqn. 5.2. The uncertainty contribution from the Q-factor method could then be added to the

statistical uncertainty to obtain the total “statistics-based” uncertainty:

σ2 = σ2
ω + σ2

statistical . (5.4)

We also implemented this procedure for all other channels.
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Propagation of the Uncertainty from the Q - Factor Method. Consider a simple count-

ing experiment, for example the determination of the induced polarization in the decay of the

Σ+ hyperon (Eqn. 4.25):

P =
2

α

N up − Ndown

N up + Ndown
=

2A

α
,

where Nup and Ndown were the total number of events with the proton in the direction above and

below the reaction plane, respectively. The uncertainty in the Q value of each event only affected

the counts, and not the parameter α. Equation 5.2 showed that the uncertainty of the count in a

particular bin due to the Q-factor method was:

σ2
N =

∑
i, j

σiQ ρij σ
j
Q ,

where σiQ is the fit uncertainty in the Q value of the ith event, N is the total number of events

and ρij is the correlation between the ith and the jth event (which is equal to the fraction of

the number of common nearest neighbors. Depending on the available statistics in an analysis, it

is often more convenient to assume that all events are 100 % correlated and to overestimate the

uncertainties than to calculate the actual correlations, ρij . This can be very time consuming and

computationally demanding. In our g12 analysis, we chose to find the actual correlations because

we found that σN was significantly over (under)estimated when 100 % (0 %) correlation between

events was assumed.

From standard error propagation, and writing P as a function of the counts, P = f(Nup, Ndown):

σP =

√(
∂f

∂Nup

)2

σ2
N up

+

(
∂f

∂Ndown

)2

σ2
N down

=
4

α (Nup + N down)2

√
N2

down σ
2
N up

+ N2
up σ

2
N down

.

(5.5)

If σN up = σN down
= σN , the above equation simplified to:

σP =
4σN

α (Nup + Ndown)

√
N2

up + N2
down

(N down + Nup)2
. (5.6)

Therefore, σN up and σN down
could be found by using Eqn. 5.2, and substituting them into Eqn. 5.5

then yielded σP . Similarly, one could follow the method outlined above to analytically find the

contribution of the Q-factor method to the total systematic uncertainty in any other observable

associated with a simple counting experiment (cross section measurements, for instance).
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Figure 5.1: The distribution of contributions to the total systematic uncertainty from the CL cut,
integrated over all energy and angle bin.

5.1.2 Contribution from the Confidence-Level Cut

Another source of the total systematic uncertainty that we considered was the confidence-level

(CL) cut. The procedure to determine the uncertainty of this cut was to re-calculate the cross

sections based on various CL-cut values. We have studied various CL cuts from 0.1 % to 5 %.

Denoting the originally-measured value of the differential cross section for a kinematic bin A0,

and the newly-measured value based on the new CL cut An, then the absolute uncertainty will be:

σCL =
|An − Ao|

Ao
. (5.7)

The corresponding distribution of Eqn. 5.7 for all energy and angle bins is shown in Fig. 5.1. We

fitted this distribution with a Gaussian and used the width, σ̄ = 2.1 %, as the contribution to the

systematic uncertainty from the CL cut.

5.1.3 Further Contributions from the g12 Systematics

The general study of the g12 systematics has been discussed in the g12 analysis note [46] and

is summarized in Table 5.1 below.
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Table 5.1: Summary of contributions to the total systematic uncertainty [46].

As an example, the sector-by-sector normalization was derived using the acceptance-corrected yields

for different sectors as shown in Figure 5.2. The uncertainty was calculated using the deviation of

the yield in each sector from the average acceptance-corrected yield of all six sectors.

5.1.4 Contribution from the Beam Polarization

The beam-helicity asymmetry (in a simple counting experiment) is inversely proportional to

the average degree of the beam polarization. This relation has been shown for the hyperon recoil-

polarization P in the reaction γp → KS Σ+ (see Eqn. 4.25), where the asymmetry is inversely

proportional to the parameter α. Hence, from error propagation, it is clear that any uncertainty in

the determination of the average beam polarization led to the same percentage uncertainty in the

polarization observable.

5.1.5 Contribution from the Beam-Charge Asymmetry

Section 3.11.3 discussed the beam-charge asymmetry in detail. Since these contributions were

very small, effects on the observables were considered negligible.

5.1.6 Contribution from the Accidental Photons

In Section 3.3.1, we discussed how initial photons were selected. Even after following the full

selection procedure, some accidental photons remained. The fraction could be estimated from

a comparison in the yields between the central peak with the neighboring beam buckets in the

coincidence-time distribution. For example, the fraction was at most 2.5 % in g12 (see Figure 5.3).
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Figure 5.2: The acceptance-corrected ω yields for different sectors. The six different colors represent
the six different CLAS sectors.

These accidentals led to a small overestimation in the photon flux by the same factor in all data

sets. Therefore, in counting experiments, the accidentals did not affect the polarization observables

since the factor canceled out in the asymmetry.

5.1.7 Systematic Uncertainties in the Determination of SDMEs

If we Taylor-expand − lnL(α) around α = α∗ where α∗ is the correct parameter that minimizes

− lnL:

− lnL(α) = − lnL(α∗) − (α − α∗)2 1

2

d2 lnL
dα2

∣∣∣∣
α=α∗

, (5.8)
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Figure 5.3: Coincidence-time distributions of tagged photons for the raw data (dotted histogram)
and after applying all γp→ p π+π− selection cuts (solid histogram). Events of the center bins filled
in black indicate the candidates of the final selection. The fraction of remaining accidental photons
in the central bucket was at most 2.5 %.

then we can write − lnL as:

− lnL(α) = C e
(α−α∗)2

2σ2 , (5.9)

where C is a constant and σ2 =
(
d2 lnL
dα2

∣∣∣
α=α∗

)−1
.

Therefore, − lnL shows a Gaussian distribution with σ as the statistical uncertainty that is

returned by MINUIT. However, we then multiply lnL by a factor of two so that it takes the

approximate form of a χ-square distribution and the interpretation of the deviation is similar to

the interpretation of the sum of squares in least-square regression. Therefore, the final function

that needs to be minimized is −2 lnL which gives us:

σ2 =
1

2

(
d2 lnL
dα2

∣∣∣∣∣
α=α∗

)−1

(5.10)

as the statistical uncertainty.

We considered the propagated Q-value uncertainties as the systematic uncertainties for the

SDMEs. The procedure was based on the variation of the Q value according to:

Q − σQ < Q < Q + σQ ,

where σQ was the uncertainty of Q.
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Figure 5.4: Distributions of the systematic uncertainties for the spin-density matrix elements ρ0
00

(top left), ρ0
1−1 (top right), and Reρ0

10 (bottom row), integrated over all energies and angles.

If we denote the originally-measured value of the SDME by Ao and the newly-determined value

(based on the new Q) as An, then the uncertainty was calculated as

σρ =
|An − Ao|

Ao
. (5.11)

The SDMEs’ uncertainty distributions – integrated over all energies and angles – are shown in

Figure 5.4. We considered σ̄ = 2.1 %, 9.6 % and 7.3 % the values of the systematic uncertainties for

the elements ρ0
00, ρ

0
1−1 and Re(ρ0

10), respectively.

5.1.8 Total Systematic Uncertainty

The error bars shown in all preliminary results include the Q-factor uncertainties that have

been combined with the statistical uncertainties in quadrature. The uncertainties stem from the

relevant sources that have been described in previous sections and also include some channel-specific

uncertainties, i.e. branching fractions of the decay mode. The total systematic uncertainty for each

observable is listed in the table below.

5.2 Systematic Uncertainties in the g9a Experiment

The overall systematic uncertainty includes uncertainties in the background-subtraction method,

the degree of photon-beam and target-proton polarization, and the contributions from the electron-

beam charge asymmetry. The systematic uncertainty in the ω and KΣ yields in a kinematic bin

due to the Qfactor method was obtained and propagated using the same method described in sec-

tion 5.1.1. The electron-beam polarization that was toggled between h+ and h− helicity states at
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Table 5.2: Total systematic uncertainty for each observable from the g12 data sets.

Source γp→ pω γp→ K0 Σ+ PΣ+

Sector by Sector 5.9 % 5.9 % 5.9 %

Flux 1.7 % 1.7 % 1.7 %

Target 0.5 % 0.5 % 0.5 %

z-vertex 0.4 % 0.4 % 0.4 %

Fiducial Selection 2.4 % 2.4 % 2.4 %

Normalization 1.8 % 1.8 % 1.8 %

Branching Fraction 0.7 % 0.05 % and 0.3 % -

Parity Mixing, α - - 0.02 %

a rate of 29.560 Hz in the g9a experiment had beam-charge asymmetries, which is described in

section 3.11.3. However, the contributions from this source of the systematic uncertainty were less

that 0.4 % and considered negligible.

The systematic uncertainties in the degree of photon-beam and target-proton polarization are

applied as global factors of 2 % and 3 %, respectively. An additional possible source of systematic

uncertainty is the presence of accidental photons. The fraction of accidental photons was at most

2.5 %. It ws estimated from comparing the central peak with the neighboring electron beam buck-

ets in the coincidence-time spectrum, which is defined per photon as the difference between the

Tagger time and the Start Counter time at the interaction point. Accidental photons lead to an

overestimation of the event numbers but drop out in the asymmetry of event counts.
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CHAPTER 6

FINAL RESULTS

6.1 Results from the g12 Experiment

6.1.1 Results for the γp→ p ω Reaction

The following section presents and discusses our final results in ω photoproduction. We compare

with previous CLAS results whenever these are available.

Differential Cross Sections in γp→ pω. Figures 6.2-6.7 show the differential cross sections

of the reaction γp → pω, covering the center-of-mass energy range 1.92 < W < 3.30 GeV. The

CLAS-g12 results are shown in black. Also shown in the figures (if available) are the previous

results from the CLAS-g11a experiment (red points) [25]. The uncertainties for both data sets

(CLAS g11a and g12) include the Q-factor uncertainties and the statistical uncertainties added in

quadrature. We simply followed the example of g11a to properly compare our results.

The results are presented in 10-MeV-wide center-of-mass energy bins, which yields a total of

130 energy bins. Please note that some g12 bins are missing due to some tagger inefficiencies: (1)

2.73 < W < 2.75 GeV and (2) 2.55 < W < 2.61 GeV. In general, the agreement with the previous

CLAS-g11a measurements is very good. Some discrepancies at low energies are observed but toward

higher energies, the agreement becomes better. In fact, the agreement can be considered excellent

at center-of-mass energies above 2.18 GeV (with the exception of some bins above W ≈ 2.77 GeV).

The g12/g11a ratio distribution is shown in Figure 6.1. Note that this distribution is not necessarily

expected to be Gaussian but we used a Gaussian fit to determine a mean value.

The data at Eγ > 4.0 GeV are first-time measurements with unprecendented statistical quality

and will bridge the gap between these lower-energy CLAS data and data from the 12-GeV era.

Spin-Density Matrix Elements in γp→ pω. Figure 6.9-6.23 show the spin-density matrix

elements (SDMEs) – ρ0
00, Re(ρ0

10), and ρ0
1−1 – for the reaction γp→ pω, covering the center-of-mass

energy range 1.92 < W < 3.12 GeV. The CLAS g12 results are shown as black data points. Also
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Figure 6.1: The g12/g11a ratio distribution of the γp→ pω cross sections results.

shown in the figure are the previous results from the CLAS-g11a experiment (red data points) [25].

The shown uncertainties for both data sets are only statistical.

The results are presented in 10-MeV-wide W bins for 1.92 < W < 2.72 GeV, and in 20-MeV-

wide energy bins for 2.72 < W < 3.12 GeV. Please note the broken tagger modules in the g12 data

at 2.73 < W < 2.75 GeV and 2.55 < W < 2.61 GeV. Our data are in good agreement with the

previous CLAS g11a results for the element Re(ρ0
10) results, while the agreement for the elements

ρ0
00 and ρ0

1−1 is acceptable. Some discrepancies are observed in the forward direction at low energies.

The high-energy results (Eγ > 4.0) GeV are first-time measurements.

6.1.2 Results for the γp→ K0 Σ+ Reaction

Charged K photoproduction, e.g. in γp→ K+ Λ and γp→ K+Σ0, has been extensively studied

in recent years at CLAS and elsewhere. However, the K0 channel has tended to be sidelined. This

appears entirely unjustified, though. To study s-channel resonance excitations, the photoproduction

of neutral kaons offers some distinctive advantages over charged ones, because the photons cannot

directly couple to the (vanishing) charge of the meson. Data on the isospin-related K0 Σ+ and

K+ Σ0 channels are also important to disentangle contributions from N∗ and ∆∗ resonances.
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Figure 6.2: The differential cross sections in the reaction γp → pω for the center-of-mass energy
range 1.92 < W < 2.12 GeV from g12 (black data points) in comparison with the previous CLAS
measurements from g11a [25] (red points). The given uncertainties for both data sets comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature.

At CLAS, the differential cross sections for the reaction γp→ K0 Σ+ have been studied using g1c

data [69] and g11a data [70, 71] but results have never been published. The additional extraction of

the Σ+ hyperon transverse polarization was also part of the research of Ref. [71] and was published

as a standalone analysis in Physical Review C [75].
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Figure 6.3: The differential cross sections in the reaction γp → pω for the center-of-mass energy
range 2.12 < W < 2.32 GeV from g12 (black data points) in comparison with the previous CLAS
measurements from g11a [25] (red points). The given uncertainties for both data sets comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature.

Differential Cross Sections in γp→ K0 Σ+. Figure 6.24 and 6.25 show the g12 differential

cross sections of the reaction γp → K0 Σ+ in 50-MeV-wide incident-photon energy bins, covering

the energy range 1.15 < Eγ < 2.90 GeV. The uncertainties include the Q-factor uncertainties and

the statistical uncertainties added in quadrature.

Figure 6.26 shows again our CLAS-g12 differential cross sections for the reaction γp→ K0 Σ+
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Figure 6.4: The differential cross sections in the reaction γp → pω for the center-of-mass energy
range 2.32 < W < 2.52 GeV from g12 (black data points) in comparison with the previous CLAS
measurements from g11a [25] (red points). The given uncertainties for both data sets comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature.

(black data points), now presented in 100-MeV-wide incident-photon energy bins and covering the

energy range 1.15 < Eγ < 2.25 GeV. Also shown in the figure are the previous results from the

CB-ELSA Collaboration (red data points) [72] and from the CBELSA/TAPS Collaboration (blue

data points) [73]. We have adjusted our energy binning to these published results to facilitate

the comparison. The shown uncertainties are statistical only for all data points. We consider the
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Figure 6.5: The differential cross sections in the reaction γp → pω for the center-of-mass energy
range 2.52 < W < 2.72 GeV from g12 (black data points) in comparison with the previous CLAS
measurements from g11a [25] (red points). The given uncertainties for both data sets comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature. Please note that the
g12 data suffer from broken tagger paddles in the energy range 2.55 < W < 2.61 GeV (around
Eγ ≈ 3.0 GeV).

agreement among the data sets reasonably good.

In general, all data sets show a similar trend. The cross sections exhibit a flat distribution close

to the reaction threshold, which indicates baryon resonance contributions, and then develop an

almost linear forward-angle peaking behavior toward higher energies. The slope of these distribu-
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Figure 6.6: The differential cross sections in the reaction γp → pω for the center-of-mass energy
range 2.72 < W < 2.92 GeV from g12 (black data points) in comparison with the previous CLAS
measurements from g11a [25] (red points). The given uncertainties for both data sets comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature. Please note again that
the g12 data suffer from broken tagger paddles in the energy range 2.73 < W < 2.77 GeV (around
Eγ ≈ 3.6 GeV).

tions starts to decrease again above Eγ ≈ 1.7 GeV. Figure 6.27 shows the energy dependence of all

cross section results (CLAS g12, CB-ELSA, CBELSA/TAPS) in 0.1-wide cos c.m. bins for the K0.

The CBELSA/TAPS Collaboration previously reported on an anomaly [73] which was consid-

ered visible in the CBELSA/TAPS data as a sudden drop of the cross section at forward angles
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Figure 6.7: The differential cross sections in the reaction γp → pω for the center-of-mass energy
range 2.92 < W < 3.12 GeV from g12 (black data points). The given uncertainties comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature. These data represent
first-time measurements.

around Eγ ≈ 1.7 GeV. Taken directly from Ref. [73], the authors claim that the differential cross

section exhibits increasing forward-peaking with energy, but only up to the K∗ threshold. Beyond, it

suddenly returns to a flat distribution with the forward cross section dropping by a factor of four. In

the total cross section, a pronounced structure is observed between the K∗ Λ and K∗Σ thresholds.

In fact, the incident-photon energy bin 1.65 < Eγ < 1.75 GeV (see Fig. 6.26) shows a fairly large
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Figure 6.8: The differential cross sections in the reaction γp → pω for the center-of-mass energy
range 3.12 < W < 3.30 GeV from g12 (black data points). The given uncertainties comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature. These data represent
first-time measurements.

discrepancy between our results and the CBELSA/TAPS results and the sudden intensity drop

of the CBELSA/TAPS data is clearly seen. However, Fig. 6.26 also shows that our data do not

exhibit this anomaly. On the contrary, the g12 cross sections show a smooth transition across all

energy bins. We believe that an instrumental effect in the CBELSA/TAPS data (e.g. affecting the

photon flux determination) is likely the origin for the observed sudden drop.

142



Induced Hyperon Polarization in γp → K0 Σ+. Figure 6.28, 6.29, and 6.30 show the

hyperon polarization in the reaction γp → K0 Σ+ from CLAS g12 in comparison with the results

from three previous measurements.

(1) Figure 6.28 shows the hyperon polarization from CLAS g12 (red points), presented in 100-

MeV-wide energy bins and covering the energy range 1.15 < Eγ < 3.05 GeV. Also shown in the

figure are the previous results from CBELSA/TAPS (blue points) [74]. The given uncertainties for

the g12 data are the statistical uncertainties and the Q-factor uncertainties added in quadrature.

The agreement is good within the statistical uncertainties.
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Figure 6.9: The spin-density matrix element ρ0
00 in the reaction γp→ pω for 1.92 < W < 2.12 GeV

from g12 (black data points) in comparison with the previous CLAS measurements from g11a (red
data points). The shown uncertainties for both data sets are statistical only.
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Figure 6.10: The spin-density matrix element ρ0
00 in the reaction γp→ pω for 2.12 < W < 2.32 GeV

from g12 (black data points) in comparison with the previous CLAS measurements from g11a (red
data points). The shown uncertainties for both data sets are statistical only.

(2) Figure 6.29 shows the hyperon polarization from CLAS g12 (red points), presented in 300-

MeV-wide energy bins and covering the energy range 1.15 < Eγ < 2.25 GeV. Also shown in the

figure are the previous results from CB-ELSA (blue points) [72]. The given uncertainties for the

g12 data are statistical only. The agreement is again good within the statistical uncertainties.

(3) Figure 6.30 shows the hyperon transverse polarization from CLAS g12 (red points), presented
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Figure 6.11: The spin-density matrix element ρ0
00 in the reaction γp→ pω for 2.32 < W < 2.52 GeV

from g12 (black data points) in comparison with the previous CLAS measurements from g11a (red
data points). The shown uncertainties for both data sets are statistical only.

in 170-MeV-wide energy bins and covering the energy range 1.16 < Eγ < 3.03 GeV. Also shown

in the figure are the previous results from CLAS-g11a (blue points) [75]. Please note that in

this comparison, we used the incident photon and the recoiling Σ+ to define the reaction plane,

which resulted in a sign flip. The given uncertainties for the g12 data are statistical only. Major

discrepancies are clearly observed, in particular at lower energies.
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Figure 6.12: The spin-density matrix element ρ0
00 in the reaction γp→ pω for 2.52 < W < 2.72 GeV

from g12 (black data points) in comparison with the previous CLAS measurements from g11a (red
data points). Please note that the g12 data suffer from broken tagger paddles that affected the
energy range 2.56 < W < 2.59 GeV (around Eγ ≈ 3.0 GeV). The shown uncertainties for both
data sets are statistical only.

We have compared the unpublished cross section results of Ref. [71], which were based on the

same data used for the polarization observable of Ref. [75], with our cross section results (not shown

here) and also found major discrepancies. However, our angular distributions are in reasonable

agreement with the unpublished cross section results of Ref. [70] (also not shown here). We do
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Figure 6.13: The spin-density matrix element ρ0
00 in the reaction γp→ pω for 2.72 < W < 3.12 GeV

from g12 (black data points) in comparison with the previous CLAS measurements from g11a (red
data points). The shown uncertainties for both data sets are statistical only.

not believe that the blue data points are correct in Fig. 6.30, particularly for the two energy bins

1.50 < Eγ < 1.67 and 1.67 < Eγ < 1.84.
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Figure 6.14: The spin-density matrix element Re(ρ0
10) in γp→ pω for 1.92 < W < 2.12 GeV from

g12 (black data points) in comparison with the previous CLAS measurements from g11a (red data
points). The shown uncertainties for both data sets are statistical only.
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Figure 6.15: The spin-density matrix element Re(ρ0
10) in γp→ pω for 2.12 < W < 2.32 GeV from

g12 (black data points) in comparison with the previous CLAS measurements from g11a (red data
points). The shown uncertainties for both data sets are statistical only.
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Figure 6.16: The spin-density matrix element Re(ρ0
10) in γp→ pω for 2.32 < W < 2.52 GeV from

g12 (black data points) in comparison with the previous CLAS measurements from g11a (red data
points). The shown uncertainties for both data sets are statistical only.
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Figure 6.17: The spin-density matrix element Re(ρ0
10) in γp→ pω for 2.52 < W < 2.72 GeV from

g12 (black data points) in comparison with the previous CLAS measurements from g11a (red data
points). Please note that the g12 data suffer from broken tagger paddles that affected the energy
range 2.56 < W < 2.59 GeV (around Eγ ≈ 3.0 GeV). The shown uncertainties for both data sets
are statistical only.

151



2.22 < W < 2.23 GeV 2.23 < W < 2.24 GeV 2.24 < W < 2.25 GeV 2.25 < W < 2.26 GeV 2.26 < W < 2.27 GeV

2.27 < W < 2.28 GeV 2.28 < W < 2.29 GeV 2.29 < W < 2.30 GeV 2.30 < W < 2.31 GeV 2.31 < W < 2.32 GeV

2.32 < W < 2.33 GeV 2.33 < W < 2.34 GeV 2.34 < W < 2.35 GeV 2.35 < W < 2.36 GeV 2.36 < W < 2.37 GeV

2.37 < W < 2.38 GeV 2.38 < W < 2.39 GeV 2.39 < W < 2.40 GeV 2.40 < W < 2.41 GeV 2.41 < W < 2.42 GeV

-0.3

-0.1

0.1

-0.3

-0.1

0.1

-0.3

-0.1

0.1

-0.3

-0.1

0.1

0.3

-1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 1

c.m.
ωθ cos 

100
ρ

 R
e

Figure 6.18: The spin-density matrix element Re(ρ0
10) in γp→ pω for 2.72 < W < 3.12 GeV from

g12 (black data points) in comparison with the previous CLAS measurements from g11a (red data
points). The shown uncertainties for both data sets are statistical only.
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Figure 6.19: The spin-density matrix element ρ0
1−1 in the reaction γp → pω for 1.92 < W <

2.12 GeV from g12 (black data points) in comparison with the previous CLAS measurements from
g11a (red data points). The shown uncertainties for both data sets are statistical only.
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Figure 6.20: The spin-density matrix element ρ0
1−1 in the reaction γp → pω for 2.12 < W <

2.32 GeV from g12 (black data points) in comparison with the previous CLAS measurements from
g11a (red data points). The shown uncertainties for both data sets are statistical only.

154



2.32 < W < 2.33 GeV 2.33 < W < 2.34 GeV 2.34 < W < 2.35 GeV 2.35 < W < 2.36 GeV 2.36 < W < 2.37 GeV

2.37 < W < 2.38 GeV 2.38 < W < 2.39 GeV 2.39 < W < 2.40 GeV 2.40 < W < 2.41 GeV 2.41 < W < 2.42 GeV

2.42 < W < 2.43 GeV 2.43 < W < 2.44 GeV 2.44 < W < 2.45 GeV 2.45 < W < 2.46 GeV 2.46 < W < 2.47 GeV

2.47 < W < 2.48 GeV 2.48 < W < 2.49 GeV 2.49 < W < 2.50 GeV 2.50 < W < 2.51 GeV 2.51 < W < 2.52 GeV

-0.3

-0.1

0.1

-0.3

-0.1

0.1

-0.3

-0.1

0.1

-0.3

-0.1

0.1

0.3

-1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 1

c.m.
ωθ cos 

1-
1

0
ρ 

Figure 6.21: The spin-density matrix element ρ0
1−1 in the reaction γp → pω for 2.32 < W <

2.52 GeV from g12 (black data points) in comparison with the previous CLAS measurements from
g11a (red data points). The shown uncertainties for both data sets are statistical only.
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Figure 6.22: The spin-density matrix element ρ0
1−1 in the reaction γp → pω for 2.52 < W <

2.72 GeV from g12 (black data points) in comparison with the previous CLAS measurements from
g11a (red data points). Please note that the g12 data suffer from broken tagger paddles that
affected the energy range 2.56 < W < 2.59 GeV (around Eγ ≈ 3.0 GeV). The shown uncertainties
for both data sets are statistical only.
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Figure 6.23: The spin-density matrix element ρ0
1−1 in the reaction γp → pω for 2.72 < W <

3.12 GeV from g12 (black data points) in comparison with the previous CLAS measurements from
g11a (red data points). The shown uncertainties for both data sets are statistical only.
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Figure 6.24: The differential cross sections in the reaction γp → K0 Σ+ for the incident-photon
energy range 1.15 < Eγ < 2.15 GeV from CLAS g12. The given uncertainties comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature.
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Figure 6.25: The differential cross sections in the reaction γp → K0 Σ+ for the incident-photon
energy range 2.15 < Eγ < 2.90 GeV from CLAS g12. The given uncertainties comprise the
statistical uncertainties and the Q-factor uncertainties added in quadrature.

159



 < 1.15 GeVγ1.05 < E  < 1.25 GeVγ1.15 < E  < 1.35 GeVγ1.25 < E  < 1.45 GeVγ1.35 < E

 < 1.55 GeVγ1.45 < E  < 1.65 GeVγ1.55 < E  < 1.75 GeVγ1.65 < E  < 1.85 GeVγ1.75 < E

 < 1.95 GeVγ1.85 < E  < 2.05 GeVγ1.95 < E  < 2.15 GeVγ2.05 < E  < 2.25 GeVγ2.15 < E

0

0.05

0

0.05

0

0.05

0.1

-1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 1

cm
Kθ cos 

b]
µ

 [
Ω

/d
σ

 d

Figure 6.26: The differential cross sections in the reaction γp → K0 Σ+ for the incident-photon
energy range 1.15 < Eγ < 2.25 GeV in 100-MeV-wide energy bins from g12 (black data points)
in comparison with the previous measurements from CBELSA/TAPS [73] (blue data points) and
CB-ELSA [72] (red data points). The given uncertainties for the g12 data are statistical only to
facilitate the comparison.
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Figure 6.27: The differential cross sections in the reaction γp → K0 Σ+ for the incident-photon
energy range 1.15 < Eγ < 2.25 GeV in 0.1-wide cos θc.m. bins from g12 (black data points) in
comparison with the previous measurements from CBELSA/TAPS [73] (blue data points) and
Crystal Barrel [72] (red data points). The given uncertainties for the g12 data are statistical only
to facilitate the comparison.

161



1.15 < E < 1.25 GeV 1.25 < E < 1.35 GeV 1.35 < E < 1.45 GeV 1.45 < E < 1.55 GeV 1.55 < E < 1.65 GeV

0 8 0 6 0 0 2 0 0 2 0 0 6 0 8
1.65 < E < 1.75 GeV

0 8 0 6 0 0 2 0 0 2 0 0 6 0 8
1.75 < E < 1.85 GeV

0 8 0 6 0 0 2 0 0 2 0 0 6 0 8
1.85 < E < 1.95 GeV

0 8 0 6 0 0 2 0 0 2 0 0 6 0 8
1.95 < E < 2.05 GeV

0 8 0 6 0 0 2 0 0 2 0 0 6 0 8
2.05 < E < 2.15 GeV

2.15 < E < 2.25 GeV 2.25 < E < 2.35 GeV 2.35 < E < 2.45 GeV 2.45 < E < 2.55 GeV 2.55 < E < 2.65 GeV

2.65 < E < 2.75 GeV 2.75 < E < 2.85 GeV 2.85 < E < 2.95 GeV 2.95 < E < 3.05 GeV
-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0 0.5 1

cm
Kθ cos 

 P

Figure 6.28: The hyperon polarization in the reaction γp→ K0 Σ+ for the incident-photon energy
range 1.15 < Eγ < 3.05 GeV from CLAS g12 (red points) in comparison with the previous mea-
surements from CBELSA/TAPS [74] (blue points). The given uncertainties for the g12 data are
the statistical uncertainties and the Q-factor uncertainties added in quadrature.
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Figure 6.29: The hyperon polarization for γp→ K0 Σ+ in the energy range 1.15 < Eγ < 2.25 GeV
from CLAS g12 (red points) in comparison with previous measurements from CB-ELSA [72] (blue
points). The given uncertainties for the g12 data are statistical only.
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Figure 6.30: The hyperon polarization for γp→ K0 Σ+ in the energy range 1.16 < Eγ < 2.52 GeV
from CLAS g12 (red points) in comparison with the previous measurements from CLAS g11a (blue
points). The given uncertainties for the g12 data are statistical only.
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6.2 Results from the g9a Experiment

6.2.1 Results for the γp→ p ω Reaction

The Helicity Asymmetry E in γp → pω. This section presents and discusses our final

results for the first CLAS measurement of the helicity asymmetry E in the reaction γp → pω →

pπ+π−π0.

Figure 6.31 shows our measurement of the helicity asymmetry - polarization observable - E

- associated with a longitudinally-polarized target and a circularly-polarized beam for the whole

available energy range Eγ ∈ [1.1, 2.3] GeV (red circle). The data are given in 100 MeV-wide energy

bins. The available statistics was sufficient for eight data points in cos θωc.m.. The systematic

uncertainties are given as bands at the bottom of each distribution.

Also shown in the figure are the published results from the CBELSA/TAPS collaboration [27]

(blue). Both data sets are consistent in their asymmetry behavior (same sign for almost every data

point). However, large discrepancies in the magnitude are visible, in particular at low energies,

Eγ < 1.5 GeV. The CBELSA/TAPS results suffer from huge statistical fluctuations, which can

partially explain the observed discrepancies. Moreover, significant contributions from the double-

pion reaction γp→ π0π0 made the background subtraction in that analysis challenging.

The BnGa group has recently reported on a PWA [32] that, at the time, was resticted to ω

data from the CBELSA/TAPS experiment alone. The new BnGa-PWA solution, which is based

on the CLAS data, is shown in Figure 6.31 as a solution. In the BnGa analysis, close to the

reaction threshold, JP = 3/2+ remains the leading resonant partial wave and shows a strong peak

with a maximum around W = 1.8 GeV. This wave is identified with the N(1720)3/2+ state. The

JP = 1/2− wave has a maximum close to the reaction threshold, which can be identified with

the N(1895)1/2− resonance. The N(1680)5/2+, N(2000)5/2+ and N(2100)3/2− resonances are

also identified. The non-resonant contributions, π exchange in the t-channel was found to remain

small across the analyzed energy range, while pomeron t-channel exchange gradually grew from the

reaction threshold to dominate all other contributions above W = 2 GeV.
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Figure 6.31: Measurement of the helicity asymmetry E in the reaction γp→ pω using a circulary-
polarized photon beam and a longitudinally-polarized target. The data are shown in 100-MeV-wide
bins for the photon energy range Eγ ∈ [1.1, 2.3] GeV. The CLAS-FROST results in red circle are
compared with results from the CBELSA/TAPS collaboration [27] in blue box, which used the
radiative decay mode, ω → π0γ. The black solid line represents the BnGa PWA solution. The
data points include statistical uncertainties only; the total systematic uncertainty is given as bands
at the bottom of each distribution.
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6.2.2 Results for the γp→ K0 Σ+ Reaction

The Helicity Asymmetry E in γp→ K0 Σ+. This section presents and discusses our final

results for the first-time measurement of the helicity asymmetry E in the reaction γp→ K0 Σ+ →

pπ+π−π0.

Figure 6.32 shows the observable in 200-MeV-wide energy bins using five 0.4-wide angle bins

in cos θKc.m.. The blue bar for each data point denotes the uncertainty comprising the statistical

and Q-value total uncertainty added in quadrature. A large fraction of this overall uncertainty

accounts for the scaling of the asymmetry with theproduct of beam and target polarization, which

has a similar effect on the uncertainty. To demonstrate this scaling effect, we show superimposed

(in black) in Figure 6.32 the uncertainty without considering the beam and target polarization.

Despite the fairly large uncertainties, a certain trend can be observed in the distributions. The

negative slope at very low energies close to the reaction threshold appears to switch to a flatter

distribution in the second energy bin, and finally turn into a positive slope in the third energy bin.

All data points appear to be positive above 1.3 GeV.
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Figure 6.32: Measurement of the helicity asymmetry in the reaction γp → K0 Σ+ utilizing a
circularly-polarized photon beam and a longitudinally-polarized target. The results are shown in
200-MeV-wide bins for the photon energy range Eγ ∈ [1.1, 2.3]; see text for more details.
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CHAPTER 7

SUMMARY AND OUTLOOK

Spectroscopy is a tool, utilized by physicists to understand how quark and gluon dynamics give

rise to the spectrum of hadrons. Studying the spectra of composite systems has yielded a number

of great scientific discoveries. The spectrum of chemical elements inspired the concept of the atom,

and atomic spectroscopy led to the development of quantum mechanics. The ”Eighfold Way”

classification for hadrons then established the existence of three valence quarks. Currently, at the

forefront of fundamental research is the mapping of the whole spectrum of excited baryons in order

to establish the dynamics of quarks and gluons in making these hadrons.

However, the spectrum of baryons is very complicated due to the broad and overlapping nature

of the baryon resonances. It is also not well understood since many predicted excited states have not

been experimentally observed. These missing resonances are predicted to couple strongly to photon

beams and decay to final states involving a heavier meson, such as the vector mesons ω, ρ and φ.

These factors motivated the measurement of differential cross sections, the spin density matrix

elements and the helicity asymmetry E for γp→ pω using CLAS at Jefferson Laboratory. Another

channel of interest is the strangeness production in γp → K0Σ+. The strange quark generates

another degree of freedom and gives additional information not available from the nucleon-nucleon

scattering. We have measured the differential cross sections, helicity asymmetry E and recoil

hyperon polarization P from this channel. These measurements were performed using circularly-

polarized photons in two different experiments, utilized Frozen Spin Target (FROST) in the g9a

experiment, and unpolarized liquid hydrogen in the g12 experiment.

The results from our measurements will significantly augment the world database of differential

cross sections and polarization observables. The differential cross sections and the spin density

matrix elements result in γp → pω from the g12 experiment have large statistics that extend

beyond the resonances region, and are expected to play a crucial role in probing the Regge theory.

The extracted E observable for γp→ K0Σ+ is a first-time measurement at all energies. The high

statistics differential cross sections and P data have been partial-wave analized by the BnGa group
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and are expected to identify some new resonances. The E data for the reaction γp → pω have

been partial-wave analyzed within the BnGa coupled-channels framework and contributions from

five poorly-established nucleon resonances have been identified.

Table 7.1 shows the star-ratings of nucleon resonances according to PDG 2004 (black) [77] and

the ratings in PDG 2018 (red) [78]. This shows the remarkable efforts of the hadronic physics

community in understanding QCD. 6 new resonances have been found since the last 15 years of the

photoproduction experiments and 2 of them were seen in our γp→ pω channel.

The CLAS collaboration members have contributed to the field by publishing around 200 papers

from 2004 to 2018, but they have only published one observable for the K0Σ+ channel. Thus, the

results from our measurements will significantly enrich the world database. These results are in

preparation for publication and several more observables for this channel are being analyzed at

Florida State University.

The N? spectroscopy only covered 2 members of the ground-state baryons. Thus, we need

to complete the spectroscopy program by mapping the excited baryons with strangeness content.

These experiments are now performed at JLab using GlueX detector in Hall-D as well as CLAS12

detector in Hall-B.
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Table 7.1: The star-ratings of nucleon resonances according to PDG 2004 (black) and PDG 2018
(red). Table source [78].
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